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Chapter 1 Answers

1.1 Converting from polar to Cartesian coordinates:

1.2

1.3.

1.4.

_1 1 1 e 1 g
e =ScosT=—2 ,€ ZCOS%T ¥ :
e'E:cos(E)Jrjsin(%):j e'j%=cosg ] S%ﬂ%—)
IEN e 7 7. .
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J2e' =1

converting from Cartesian to polar coordinates:
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(a) The signal x[n] is shifted by 3 to the right. The shifted signal will be zero for n<1, And n>7.
(b) The signal x[n] is shifted by 4 to the left. The shifted signal will be zero for n<-6. And n>0.
(c) The signal x[n] is flipped signal will be zero for n<-1 and n>2.
(d) The signal x[n] is flipped and the flipped signal is shifted by 2 to the right. The new Signal will be

*=1. therefore, E_ :i|x
2

ZCOS( n) Zcos( n)

zero for n<-2 and n>4.

1.5

(e) The signal x[n] is flipped and the flipped and the flipped signal is shifted by 2 to the left.
This new signal will be zero for n<-6 and n>0.
(a) x(1-t) is obtained by flipping x(t) and shifting the flipped signal by 1 to the right.
Therefore, x (1-t) will be zero for t>-2.
(b) From (a), we know that x(1-t) is zero for t>-2. Similarly, x(2-t) is zero for t>-1,
Therefore, x (1-t) +x(2-t) will be zero for t>-2.

(c) x(3t) is obtained by linearly compression x(t) by a factor of 3. Therefore, x(3t) will be
zero for t<1.



(d) x(t/3) is obtained by linearly compression x(t) by a factor of 3. Therefore, x(3t) will be
zero for t<9.
1.6 (a) x¢(t) is not periodic because it is zero for t<0.
(b) xo[n]=1 for all n. Therefore, it is periodic with a fundamental period of 1.
(c) x3[n] is as shown in the Figure S1.6.
x3[n ‘1 ‘1

Therefore, it is periodi1 ith a fun-1 mental pe-1)d of 4.
1.7. (@)

gv( Xl[”]) =%{Xl[n] + xl[—n]} = %(u[n] —u[n—4]+u[-n]-u[-n—4])
Therefore, gv(xl[n])is zero for ‘Xi[”]‘ >3.

(b) Since xy(t) is an odd signal, (X [n]) is zero for all values of t.
&y 2

7 a(xatnni%xwx;n]}:ﬂ@“[”3]@ um]]

Therefore, gV(X3[n]) is zero when |n|<3 and when |n| —oo.

1 1r = 5t
@ L (x0)=3x0+x0=7|e ut-2-g u-t+2)|
Therefore, gv(X‘l(t)) is zero only when |t —oo.
18 (a) (RAX,(1)})=-2=2p"cos(0t+7)

(0) (»x, 0} =2 cos(%) cos(3t +27) = cos(3t) = g cos(3t +0)
© (RAx, O} =g sin@z+t) =g "'sin(3t + %)

(d) (Re{x, (O} =—@ *sin(L00t) =@ 'sin(100t + 7) = @ * cos(LOOt + %)
19. (a) x is a periodic complex exponential.

. . T
10t 10t+—
o _ g )

x.H=le

(b) %, (0) is a complex exponential multiplied by a decaying exponential. Therefore,
x:® is not periodic.

(¢) x[n] isaperiodicsignal. ,  =a™"=g

jzn

Xl is a complex exponential with a fundamental period of 27” -

2

—)

3715

:m(E). By choosing m=3. We obtain the fundamental period to be 10.
3

(d) %Il is a periodic signal. The fundamental period is given by N=m(

(e xJnl is not periodic. x[nl is a complex exponential with W0:3/5. We cannot find any integer m

such that m( 2z ) is also an integer. Therefore, is not periodic.
W,
1.10. X(t)=2cos(10t+-1)-sin(4t-1)

Period of first term in the RHS =

XN

z
Period of first term in the RHS =5,
4

z-
5
o

2
Therefore, the overall signal is periodic with a period which the least common
multiple of the periods of the first and second terms. This is equal to



1.11. X[n] = 1+ei%nn_elgﬂn

Period of first term in the RHS =1.

Period of second term in the RHS =(zij=7 (when m=2)
4/7

Period of second term in the RHS :( . J:5 (when m=1)

2715
Therefore, the overall signal x[n] is periodic with a period which is the least common
Multiple of the periods of the three terms inn x[n].This is equal to 35.
1.12. The signal x[n] is as shown in figure S1.12. x[n] can be obtained by flipping u[n] and then
Shifting the flipped signal by 3 to the right. Therefore, x[n]=u[-n+3]. This implies that

M=-1 and no=-3.
X[n]
o—eo o
-3 -2 -1 n 1 2 3 n
1.13 Figure S1.12
_ — ot _ O,t <=2
YO [ e [ 6G+-0E-2)dt= | 5 1<
0,t>2
Therefore Ew:j%lt=4
—2
1.14 The signal x(t) and its derivative g(t) are shown in Figure S1.14.
X(t)
. g(®)
1
® o o0 ® oo o o o _1 1 o oo
-1 0 1 2 t 0 2 t
-3 -3
-2
Therefore Figure S 1.14

0(t) =3 5(t—2k) -3 5(t— 2k 1)

This implies that A, =3,t,=0,A,=-3,and t, =1.
1.15 (a) The signal x, [n], which is the input to S, , is the same as y, [n]. Therefore ,

1
y, [n]=x, [n'2]+5 X, [n-3]
1
=y, [n-2]+ E y,[n-3]

=2X 1 [n-2] +4x 4 [n-3] +% (2x, [n-3]+ 4x, [n-4])

=2X,[n-2]+ 5x, [n-3] + 2x, [n-4]
The input-output relationship for S is
y[n]=2x[n-2]+ 5x [n-3] + 2x [n-4]



(b) The input-output relationship does not change if the order in which S;and S, are connected series
reversed. . We can easily prove this assuming that S, follows S, . In this case , the signal x, [n], which is the
inputto S, isthe sameasy, [n].
Therefore y, [n] =2x,[n]+ 4x, [n-1]
=2y, [n]+4y, [n-1]
=2(X, [n'2]+% X, [n-3] )+4(x, [n'3]+% X, [n-4])

=2 X, [n-2]+5x, [n-3]+ 2 X, [n-4]
The input-output relationship for S is once again
y[n]=2x[n-2]+ 5x [n-3] + 2x [n-4]
1.16 (a)The system is not memory less because y[n] depends on past values of x[n].
(b)The output of the system will be y[n]= STl — =273 =0
(c)From the result of part (b), we may conclude that the system output is always zero for inputs of the
form o[n—K], ke r. Therefore , the system is not invertible .

1.17 (a) The system is not causal because the output y(t) at some time may depend on future values of x(t). For
instance , y(- 7 )=x(0).
(b) Consider two arbitrary inputs x ; (t)and x , (t).

X, (1) =y, (O)=x(sin(t))
X, () =y, (H)=x, (sin()

Let x4 (t) be a linear combination of x ; (t) and x, (t).That is , X5 ()=ax, (1)+b x, ()
Where a and b are arbitrary scalars .If x4 (t) is the input to the given system ,then the corresponding output

ys(t)is Y5 (t)= X5 (sin(t))
=a x,(sin(t))+ x, (sin(t))
=ay, ()t by, (1)
Therefore , the system is linear.
1.18.(a) Consider two arbitrary inputs x,[n]and x , [n].

n+n,

x[Inl = yy[= D x[K]
k=n-n,y

n+ny

X,[n] = y,[n]= sz[k]

k=n-n,
Let X, [n] be a linear combination of x [n] and x, [n]. That is :
X5 [n]=ax,[n]+b x, [n]

where a and b are arbitrary scalars. If X, [n] is the input to the given system, then the corresponding output

y;[nlis y3[nl= Z‘:)Xa[k]
k=n-n,
= D (ax[Kl+bx,[K])=a > x[k]+b > x,[K]
k=n-n, k=n-n, k=n-n,

=ay,[n]+by, [n]
Therefore the system is linear.
(b) Consider an arbitrary input x, [n].Let



n+n,

yo = Y x[K]

k=n-n,
be the corresponding output .Consider a second input X , [n] obtained by shifting x, [n] in time:

X, [n]=x,[n-n,]
The output corresponding to this input is

n+n, n+ng - +ny
y, [n]= ZXZ[k]: le[k_n = le[k]
k=n-n, k=n-n, k=n-n;—ngy
n—n;+ny
Also note that y,[n-n]= Z X, [K].
k=n-n;—ng

Therefore , y,[n]=y,[n-n;]
This implies that the system is time-invariant.
() If |x[n]| <B, then y[nl<(@n, +1)B.
Therefore ,C<(2n, +1)B.
1.19 (a) (i) Consider two arbitrary inputs x ; (t) and x, (t). X, () =y, )= t? X, (t-1)

X, (®) = ¥, O=t"x, (t-1)
Let X, (t) be a linear combination of x ; () and x, (). That is X4 (t)=ax, (H)+b x, ()

where a and b are arbitrary scalars. If x;(t) is the input to the given system, then the corresponding output
ys@®is Y3 ®=t°x; (1)

=t% (ax,(t-1)+b x, (t-1))

=ay; (D+by, (1)
Therefore , the system is linear.
(if) Consider an arbitrary inputs x , (t).Let y, ()= t° X, (t-1)
be the corresponding output .Consider a second input x , (t) obtained by shifting x ; (t) in time:

X, ()=x, (tt,)

The output corresponding to this input is y, ()= t?x , (t-1)= t?x L (t-1-t))

Also note that Yy ()= () 2 X, (t1-t) # y, ()
Therefore the system is not time-invariant.
(b) (i) Consider two arbitrary inputs x, [n]and x, [n]. x,[In] = y;[n]=x % [n-2]

x,[n] = y,[n]=x,7[n2].

Let X, (t) be a linear combination of x ; [nJand x, [n].Thatis X [n]=ax,[n]+b X, [n]
where a and b are arbitrary scalars. If x4 [n] is the input to the given system, then the corresponding output
ys[n]is y5[n=x,2[n-2]

=(ax,[n-2] +b x,[n-2]) ?

=a’ x, ? [n-2]+b? x, ? [n-2]+2ab x,[n-2] x,[n-2]

= ay[n]+by, [n]
Therefore the system is not linear.
(ii) Consider an arbitrary input x,[n]. Let y, [n]=X, ?[n-2]
be the corresponding output .Consider a second input X , [n] obtained by shifting x, [n] in time:

X, [n]=x,[n-n]
The output corresponding to this input is
y, [N =x7[n-2]=x%[n-2-n]



Also note that y,[n-n1=x,%[n-2-n,]
Therefore , y,[n]=y,[n-n]
This implies that the system is time-invariant.
(c) (i) Consider two arbitrary inputs x, [n]Jand x , [n].
X[l =y, [n] =x,[n+1]- x,[n-1]
X, [N]1=2y, ] =x, [n+1]-x, [n-1]
Let X, [n] be a linear combination of x [n] and x, [n]. That is :
X5 [n]=ax,[n]+b x, [n]

where a and b are arbitrary scalars. If x ; [n] is the input to the given system, then the
corresponding output y ; [n] is Y5 [n]= x5 [n+1]- x4 [n-1]

=a x,[n+1]+b x, [n +1]-a x,[n-1]-b x, [n -1]

=a(x, [n+1]- x, [n-1])+b(x , [n +1]- x,, [ -1])

= ay, [n]+b y,[n]

Therefore the system is linear.
(ii) Consider an arbitrary input x, [n].Let y,[n]= x,[n+1]- x,[n-1]

be the corresponding output .Consider a second input x, [n] obtained by shifting x,[n] in time: X, [n]=
X,[n-n]
The output corresponding to this input is

y,[n]=x, [n +1]- X, [n -1]= x,[n+1- n]- X, [n-1- n ]

Also note that y,[n-ny]= X, [n+1-n;]- X, [n-1-n,]
Therefore , y;[n]=y,[n-n,]
This implies that the system is time-invariant.
(d) (i) Consider two arbitrary inputs x , (t) and X, (t).

X, () = y, 0= 0d {x, (t)}
X, () >y, @)= Od{xz (t)}
Let x4 (t) be a linear combination of x ; (t) and x, (). That is X5 (t)=ax (t)+b x, ()
where a and b are arbitrary scalars. If X, (t) is the input to the given system, then the corresponding output
y 5 (1) is y s M= 0d {x, (t)}
=0d{ax, (t) +b X, (1)}

=a0d {x, ()} +bOd{x, (Of=ay, O+by, ®
Therefore the system is linear.
(ii) Consider an arbitrary inputs x ; (t).Let

y1 (0= 0d {x, (t)}=
be the corresponding output .Consider a second input x , (t) obtained by shifting x ; (t) in time:
X, (0)=x, (t-t,)

X, (6)-%, (1)
2

The output corresponding to this input is
Yy, (0= 0d{x, (t)}=X21-X,(-1)
2
=X, (t-t)-x, (-t —-t;)
2
Also note that Y, (tty)= X (t-t)-X(-t-t) =y (t)
2

Therefore the system is not time-invariant.



1.20 (a) Given
X (t) =e?t— y=e'*
X(t)=e?'_, yp=e %
Since the system liner
X () =1/2(e" +e?) —» yl(t):l/z(ej3t +e %
Therefore
x, (0= cos(2) —s y.® =cos(3t)

(b) we know that

X, (=cos(2(t-1/2))= (e T e+ ) 7"

Using the linearity property, we may once again write

)2

1 i L i i a i
Xl(t):E( e p2it+ ! g-2i) YA =(e Jodit4 @l efajt): cos(3t-1)
1
Therefore,
Xl(t):cos(Z(t-1/2)) — Yy =cos(3t-1)
1.21.The signals are sketched in figure S1.21.

2 x(2t+1) 2
X(t-1) X(2-1) |
1 1 . 1 .
-1 | B | | [,
T2 3 © 10 1 2 3N ¢t 1 0
-1
X(4-1/2) 2 2 [x(@) +x(-t)Ju(t) 0.5 0.5
L 1
I/I I_I [ 1 -
4 6 8 10 |12 t 0 1 t -312 312
Figure S1.21
1.22 The signals are sketched in figure S1.22
1.23 The even and odd parts are sketched in Figure S1.23
X[3-n] X[n-4]
1 [ [ [ 1/2
. ! [ [ [ [ T | N 0 lt2 s 7 n
01 2 3 I7 n 112 o)
a -1/2 -1
-1
1 X[nJu[n-3]=x[n]
X[3n] [ 172 1 X[3n+1]
2




X[3- n]/2 +(-1)"x[n]/2

! T . . — o o . 0 1 2
} 2 0 2 n (h)
B Figure $1.22
Xo(t) A xo(0)
1/2
2 |
| | | |
) 2 ; A -1 1 2 t
@) 172
4 Xo(t)
1w |
2 /
| I R L] .
1 2 0 1 2 t 2/1 0 1 2 t
R R
(b)
A
4 Xo(t)
-3t/2 | %o/ 312
| L 11 pS
l t (C) \ > >

7
n
Xo[N]
172
n
1/2
Xo[N]
11,1 1
° — oo 1 ° o—o
P l
n
() -1/2
-3/2
Figure S1.24



1.24 The even and odd parts are sketched in Figure S1.24
1.25 (a) periodic period=2 7z /(4)= /2
(b) periodic period=2  /(4)= 2
(c) x(t)=[1+cos(4t-2 £ /13)]/2. periodic period=2 7 /(4)= 7= /2
(d) x(t)=cos(4  t)/2. periodic period=2 r /(4)=1/2
(e) x(t)=[sin(4 7 t)u(t)-sin(4 r t)u(-t)]/2. Not period.
U] Not period.
1.26 (a) periodic, period=7.
(b) Not period.
(c) periodic, period=8.
(d) x[n]=(1/2)[cos(3 7= n/4+cos( 7z n/4)). periodic, period=8.
(e) periodic, period=16.
1.27 (a) Linear, stable
(b) Not period.
(c) Linear
(d) Linear, causal, stable
(e) Time invariant, linear, causal, stable
(f) Linear, stable
(9)  Time invariant, linear, causal
1.28 (a) Linear, stable
(b) Time invariant, linear, causal, stable
(c)Memoryless, linear, causal
(d) Linear, stable
(e) Linear, stable
(f) Memoryless, linear, causal, stable
(9) Linear, stable
1.29 (a) Consider two inputs to the system such that

x[n]——y,[n]=R,{x[n]}.and X, [n]——y, [n]=R.{x[n]}
Now consider a third input ¥, [n]= ¥, [n]+ X, [n]. The corresponding system output
Ya[n]=R.{x[n]}
Will be =R.{x[n]+x[n]}
=Rl +R. e ]
=[]+, [n]

therefore, we may conclude that the system is additive
Let us now assume that inputs to the system such that

x[n]——y[n]=9R, (" % [n]}.
and
X, [nN]|——y,[n]= g{e{e’”"‘xz [n]}
Now consider a third input X3 [n]= Xz [n]+ X1 [n]. The corresponding system output
Will be

:cos(ﬂn/4 % [n]f=sin(zn/4)T, {x[n]}
+cos(zn/4)9R, {x [n]}—sin(zn/4)], {x[n]}
+cos(ﬂn/4 % [n]}=sin(zn/4)], {x,[n]}

-
_ER {e’”’4x1[n]}+f}{e{e’”’4 z[n]}

=Y [n] +Y, [ ]
therefore, we may conclude that the system is additive
(b) (i) Consider two inputs to the system such that

10



X (t)—2 yl(t):&tt){dxét(t)} and  x (t)— yz(t):xltt){dxét(t)}

Now consider a third input X [tl= X, [tI+ X,I[tl- The corresponding system output

Will be
1 [dg ()T
0= %5

1 [dle@+x@]]
X (1)+x(t) dt
* Y1(t)+ Y, (t)
therefore, we may conclude that the system is not additive
Now consider a third input x4 [t]= a X1 [t]. The corresponding system output

Will be
1 (i@
y‘t(‘)-x“—a{T}

1 [dfax ()]

ax (t) dt

__a [@]

Cx(t)] dt
=ay, (t)

Therefore, the system is homogeneous.

(ii) This system is not additive. Consider the fowling example .Let & [n]=20 [n+2]+

20 [n+1]+26 [n]and ¥, [n]= O [n+1]+ 26 [n+1]+ 36 [n]. The corresponding outputs evaluated at n=0 are
y;[0]=2and y,[0]=3/2

Now consider a third input x3 [n]= Xz [n]+ X1 [n].= 30 [n+2]+4 6 [n+1]+50 [n]

The corresponding outputs evaluated at n=0 is y3[0]=15/4. Gnarly, y3[0] # y.[n]+y [0] .This

Xy [n]XA [n _2]

X, [n=1]#0
- 1 4
Ya[n] 0 %[n-1] otherwise
- 0y
YslNI= 0 * otherwise  *

Therefore, the system is homogenous.
1.30 (a) Invertible. Inverse system y(t)=x(t+4)
(b)Non invertible. The signals x(t) and x,(t)=x(t)+2 7 give the same output

(¢) &[n]and 20 [n] give the same output
d) Invertible. Inverse system; y(t)=dx(t)/dt
(e) Invertible. Inverse system y(n)=x(n+1) for n=>0 and y[n]=x[n] for n<0
(f) Non invertible. x(n) and —x(n) give the same result
(9)Invertible. Inverse system y(n)=x(1-n)
(h) Invertible. Inverse system y(t)=dx(t)/dt
(i) Invertible. Inverse system y(n) = x(n)-(1/2)x[n-1]
(1) Non invertible. If x(t) is any constant, then y(t)=0
(k) &[n]and 26 [n] result in y[n]=0
() Invertible. Inverse system: y(t)=x(t/2)
(m) Non invertible x; [n]= 6 [n]. O[n-1]and x, [n]= O [n] give y[n]= O [n]
(n) Invertible. Inverse system: y[n]=x[2n]
1.31 (a) Note that x,[t]= X1 [t]- X1 [t-2]. Therefore, using linearity we get y, ()=
y1 (©)- y1 (t-2).this is shown in Figure S1.31
(b)Note that x3 (t)= x1 [t]+ x1 [t+1]. .Therefore, using linearity we get Y3 (t)= y1 (t)+ yl (t+2). this is

11



shown in Figure S1.31

y2 (1)
? ys (1)
2
4 t
0 2 )
Figure S1.31
-2
1.32. .. .l.2ments are true

(1) x(tY periodic with period T; v (t) periodic, period T/2
(2) y1 (v) periodic, period T; bx(t) periodic, period2T

(3) x(t) periodic, period T; y, (t) periodic, period2T
(4) y.(t) periodic, period T; x(t) periodic, period T/2;
1.33(1) True x[n]=x[n+N]; y1 (n)=y1 (n+ Np)i.e. periodic with No=n/2
if N is even and with period No=n if N is odd.
(2)False. y; [n] periodic does no imply x[n] is periodic i.e. Let x[n] = g[n]+h[n] where

1 o,
afny =4t neven_ h[n] — neven
O, n odd @as/2)",n odd

Then y; [n] = x [2n] is periodic but x[n] is clearly not periodic.
(3)True. x [n+N] =x[n]; y2 [n+Ng] =y [n] where Ny=2N

(4) True. y, [n+N] =y2 [n]; Y2 [n+Ng ]=y2 [n] where No=N/2
1.34. (a) Consider

o0

> x[n1=x[0]+ > {x[n]+ X[-n]}
n=—c0 n=1
If x[n] is odd, x[n] +x [-n] =0. Therefore, the given summation evaluates to zero.
(b) Let y[n] =x1[n]xz[n] .Then

y [-n] =xa[-n] Xz[-n] =-xa[n]xz[n] =-y[n].
This implies that y[n] is odd.
(c)Consider o o o

Y xn= > xInl+ > xInl

N=—00 nN=-—o0 n=-ow0

= 2 = 2
= > x.Inl+ > xIn]
Using the result of part (b), we knOw that x.[n]x,[n] is at'odd Signal . Therefore, using
the result of part (a) we may conclude that

23 x[nlx [n1=0
Therefore, i
> X Inl= Y xInl+ X xnl
(d)Consider i ) 7

[ X’ dt=[" x mdt+ [ x’mdt+2[ x O, Mt
Again, since X, (t) X, (t) is odd,

J.:; Xe(t)Xo(t)dt = 0

Therefore,

@© 2 @© 2 © 2
j_w X ()dt = j_w X.(t)ydt+ j_w X.(t)dt.
1.35. We want to find the smallest N such that m(2z /N) Ng =27k or Ng =kN/m,
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where K is an integer, then N must be a multiple of m/k and m/k must be an integer .this implies that m/Kk is a
divisor of both m and N .Also, if we want the smallest possible Nq, then m/k should be the GCD of m and N.
Therefore, No=N/gcd(m,N).

j N)T, _ .
1.36. (a)If x[n] is periodic el%(m ) Where.a)0 =27Z/T0. This implies that
2z NT = 27k = T _ K _arational number .
0 [

(b)T/To =p/g then x[n] = € J2zn(p/a) , The fundamental period is g/gcd(p,q) and the fundmental frequency
is

.
w‘;) ged(p, g).

2 2 @,
27 ged(p, q) = = L ged(p, q) = 2 ged(p, g) =
q P q p

(c) p/gcd(p,q) periods of x(t) are needed .
1.37.(a) From the definition of @, (t).We have

4,0 =] xt+7)y(x)de

= j"; y(~t+7)x(r)dr

(b) Note from= 2y (-1). part(@) that @, () =@, (-t). This implies that ¢, (t) is
even .Therefore,
the odd part of ¢, (t).is zero.

(c) Here, ¢, (t) =g, (t—T).and g, (t) =4, (t).
1.38.(a) We know that 29, (2t) =&, (t). Therefore
This implies that

lim s (20) = @O%a,z(t).
5 (2t) :%5 (t).

(b)The plot are as shown in Figure s3.18.
1.39 We have

‘Iiggu\ o) = Iiﬂgu ©o(t) =0.
Also,

limu. ()5 (1) =%5(t).

uy (O Uy

/ 112
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1- -t/ A //\'UT
1/2e \ 1/2 1-1/2e

Figure s3.18
We have

9(t) = [ u@st-r)dr = j:’u(r)5(t —7)dr

Therefore,
0, t>0 o(t-7)=0

9(t) =11, t<0 u@)st-r)=5(t-1)
undefined fort=0

1.40.(a) If a system is additive ,then
also, if a system is homogeneous,then

0=x(t)—x(t) = y(t)-y(t) =0

0=0.x(t) > y(t).0=0
(b) y(t)=x?(t) is such a systerm .

(c) No.For example,consider y(t) y(t) = J.; X(z)dz with x(t) =u(t) —u(t —1). Then x(t)=0

for t>1,but y(t)=1 for t>1.
1.41. (a) y[n]=2x[n].Therefore, the system is time invariant.
(b) y[n]=(2n-1)x[n].This is not time-invariant because y[n- No]7 (2n—1) 2x[n- No].
(c) y[n]=x[n]{1+(-1)"+1+(-1)"*}=2x[n]. Therefore, the system is time invariant .
1.42.(a) Consider two system S; and S, connected in series .Assume that if x,(t) and x,(t) are
the inputs to S; .then y;(t) and y,(t) are the outputs.respectively .Also,assume that
if y1(t) and y,(t) are the input to S, ,then zy(t) and z,(t) are the outputs, respectively . Since S; is
linear ,we may write

s
ax, (t)+bx, (t)—>ay, (t)+by, (t),

where a and b are constants. Since S is also linear ,we may write
ay, (t)+by, (t)—>az (t)+hbz, (t),

We may therefore conclude that
ax,(t)+b Xz(t)%a z,()+bz,(t)

Therefore ,the series combination of S; and S, is linear.
Since S; is time invariant, we may write

sy
X (t=Ty) >y, (t—T,)
and

Y1 (t _To)_z) Z (t _TO)
Therefore,

$1S2
% (t-T,)—>z(t-T,)
Therefore, the series combination of S; and S, is time invariant.

(b) False, Let y(t)=x(t)+1 and z(t)=y(t)-1.These corresponds to two nonlinear systems. If these systems are
connected in series ,then z(t)=x(t) which is a linear system.

14



(c) Let us name the output of system 1 as w[n] and the output of system 2 as z[n] .Then

y[n] = z[2n] =w{2n] + %W[Zn -1] +%vv[2n -2]

1 1
=x[n]+=x[n-1]+=x[n-2]
2 4
The overall system is linear and time-invariant.
1.43. (a) We have
x(t)——y()
Since S is time-invariant.
X(t-T)——>yt-T)
Now if x (t) is periodic with period T. x{t}=x(t-T). Therefore, we may conclude that y(t)=y(t-T).This implies
that y(t) is also periodic with T .A similar argument may be made in discrete time .

(b)

1.44 (a) Assumption : If x(t)=0 for t<ty ,then y(t)=0 for t< ty To prove That : The system is causal.

Let us consider an arbitrary signal x(t) .Let us consider another signal x,(t) which is the same as xa(t)for
t<to. But for t>ty, Xo(t) #X(t),Since the system is linear,

% (1) =% (t) =¥ (1) - (1),
Since X, (t)—X,(t)=0for t< to by our assumption =y, (t)—y,(t)=0for t< t, .This implies that

¥, (t) =y, (t)for t<to . In other words, t he output is not affected by input values for t>t,. Therefore, the
system is causal .

Assumption: the system is causal . To prove that :If x(t)=0 for t< t; .then y(t)=0 for t< t; .

Let us assume that the signal x(t)=0 for t< to .Then we may express x(t) as X(t) =X, (t)— X, (t),

Where X (t)=X,(t) for t< t . the system s linear .the output to x(t) will be
y(t) =y, (t)— Y, (t).Now since the system is causal . Y, (t) =y, (t) for t<to.implies that

y; (t) =Y, (t) fort<to.Therefore y(t)=0 for t<to .

(b) Consider y(t)=x(t)x(t+1) .Now , x(t)=0 for t< t implies that y(t)=0 for t< t; .Note that the system is
nonlinear and non-causal .

(c) Consider y(t)=x(t)+1. the system is nonlinear and causal .This does not satisfy the condition of part(a).

(d) Assumption: the system is invertible. To prove that :y[n]=0 for all n only if x[n]=0 for all n .

Consider

X[n]=0— y[n].
Since the system is linear :

2X[n]=0—2y[n].
Since the input has not changed in the two above equations ,we require that y[n]=
2y[n].This implies that y[n]=0. Since we have assumed that the system is invertible ,
only one input could have led to this particular output . That input must be x[n]=0 .

Assumption: y[n]=0 for all n if x[n]=0 for all n . To prove that : The system is invertible .
Suppose that

x,[n] = y,[n]
and
X,[n] — y,[n]
Since the system is linear ,
Xl[n] =X [n] = yl[n] - yz[n] =0
By the original assumption ,we must conclude that X [n]=X,[n].That is ,any particular y;[n] can be

produced that by only one distinct input x;[n] .Therefore , the system is
invertible.

(e) yIn]=<[n].
1.45. (a) Consider ,
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X, (1) Y, (0) = dh, (1)
and
X ()3 y,(0) = i, (©)

Now, consider X, (t)=ax, (t)+bx, (t). The corresponding system output will be
Y3 = [ % (@)h(t+7)dz
=a[ x@)ht+r)dr+b[ x,(Oh(t+7)dz

=ag,, (t)+ be,,, (1)

= ay, (t) + byz (t)
Therefore, S is linear .
Now ,consider X4(t)=x;(t-T).The corresponding system output will be

Vo) = [~ % (@)h(t+7)dr
:j_ixl(r—T)h(tﬂ)dr
:J:xl(r)h(t+r+T)dr
=, (t+T)

Clearly, y4(t)7 y1(t-T).Therefore ,the system is not time-invariant.
The system is definitely not causal because the output at any time depends on future

values of the input signal x(t).
(b) The system will then be linear ,time invariant and non-causal.
1.46. The plots are in Figure S1.46.
1.47.(a) The overall response of the system of Figure P1.47.(a)=(the response of the system to
x[n]+x1[n])-the response of the system to x;[n]=(Response of a linear system L to X[n]+x.[n]+
zero input response of S)- (Response of a linear system L to x;[n]+zero input response of S)=( (Response of a
linear system L to x[n]).
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Chapter 2 answers

2.1 (a) We have know that y, = x[n]*h[n] = i h[k]x[n —k] (S2.1-1)
k=—o0
The signals x[n] and h[n] are as how in Figure S2.1
' 2 [n] 72 2
X[n
. hin]
| 3
S0 1 2 | a4 n EE n
1 Figure S2.1

From this figure, we can easily see that the above convolution sum reduces to
y,[n] = h[-1x[n+1]+ h{]x[n —1]
=2x[n+1]+2x[n—1]
This gives
y,[n]=26[n+1]+40[n]+256[n—-1]+ 256[n—2] - 26[n—4]
(b)We know that

y,[n] = x[n+2]*h[n] = i hIKIX[n +2 K]

k=—w0

Comparing with eq.(S2.1-1),we see that

Y, [n] = yl[n + 2]
(c) We may rewrite eq.(S2.1-1) as

00

yi[nl=x[n]*hn] = > x{k]h[n—k]

k=—o0

Similarly, we may write

00

yo[n]=x[n]*h[n+2] =3 x[k]h[n+2—K]

k=—o0

Comparing this with eq.(S2.1),we see that

ys[n]=y,[n+2]
2.2 Using given definition for the signal h[n], we may write

h[k] =(%j _ {u[k +3] —u[k —10]}

The signal h[K] is non zero only in the rang h[n]=h[n+2]. From this we know that the signal h[-k] is

non zero only in the rage —9 < k < 3..If we now shift the signal h[-k] by n to the right, then the resultant signal
h[n-k] will be zero inthe range (N—9) <k <(n+3).

Therefore ,
A=n-9, B=n+3
2.3 Let us define the signals
>9[n]=(%j uln]
and
h[n]=u[n].

We note that
X[n]=x[n-2] and h{n]=h[n+2]

Now,
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yIn]=x{n]*h[n]=x[n-2]*h[n+2]= > x[k-2]h[n—k+2]
k=—o0
By replacing k with m+2 in the abovr summation ,we obtain
y[n] = Z x,[m]h,[n—m]=x,[n]h,[n]

Using the results of Example 2.1 in the text book ,we may write
y[n]= 2[1—@) }u[n]

o0

y[nl=x[n]*h[n]= > x[k]h[n-K]

k=—00

2.4  We know that

The signals x[n] and y[n] are as shown in Figure S2.4.From this figure,we see that the above summation
reduces to

y[n] = X[3]h[n — 3] + x[4]h[n — 4] + X[5]h[n —5] + x[6]h[n — 6] + X[ 7]h[n — 7]+ X[8]h[n — 8] This gives
n-6, 7<n<11
= 6, 12<n<18
24-n,19<n<23
0, otherwise

” 3 8' n 15 n

Figure.S2.4
2.5. Thesignal y[n] is

o0

y[nl=x[n]*h[n]= > x[k]h[n—K].

k=—00

In this case , this summation reduces to
9

yInl= > x[kIh[n—k]= Zglh[n—k].

k=0

From this it is clear that y[n] is a summation of shifted replicas of h[n]. Since the last replicas will begin at n=9
and h[n] is zero for n>N, y[n] is zero for n>N+9. Using this and the fact y[14]=0,we may conclude that N can
at most be 4. Furthermore ,since y[4]=5,we can conclude that h[n] has at least 5 non-zero points . The only
value of N which satisfies both these conditions is 4.

2.6. From the given information, we have :

0

y[nl=x[n]*h[n]= > x[k]h[n—K].

k=—00

= i (%)’ku[—k—l]u[n—k—l]'

=5 (%)’ku[n—k—l]'

= i(%)"‘u[n +k-1]-
Replacing k by p-1,
yInl= =i(%) PN+ p] (S2.6-1)
p=0

For n=0 the above equation reduces to,
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yInl=s (})pﬂ =11 1
; 3 3, 1 2
3

For n<0 eq.(S2.6-1) reduces to,
- _1 < 1. _ 1.1 3"
y[n]— 1 pHl = (= —n+1z Lyp = 1 —n+li— 4yl
P;‘(S) (3) p=0(3) (3) 1.1 (3) 2 2

3
Therefore,

vIn= {(3" /2),n<0
(1/2),n>0
2.7.(a) Given that
x[n]= o [n-1],
we see that

yInl = 3" x{k]g[n - 2k] =0In-21=u[n-2]-uln-6]

k=—00

(b) Giventhat  x[n]= O [n-2],

we see that y[n] = Z X[k]g[n — 2k] =g[n-4]=u[n-4]-u[n-8]
k=—o0
(¢) The input to system in part(b) is the same as the input in part(a) shifted by 1 to the right . If S is the time
invariant then the system output obtained in part(b) has to the be the same as the system output obtained in part
(a) shifted by 1 to the right . Clearly , this is not the case .Therefore ,the system is not LTI.
(d) Ifx[n]=u[n], then

0

ylnl= > x[k]lg[n — 2k]

k=—o0

- ig[n—Zk]

The signals g[n-2K] is plotted for k=0,1,2 in Figure S2.7. From this figure it is clear that

1n=01
y[n]= <2,n>1 =2u[n]- Jd[n]-o[n-1]
0,otherwise
1y gn] 1 1
g[n-2] g[n-4]
e 2 3 45 " 4 5 67
Figure S2.1

2.8 Using the convolution integral.
x)*h(t)=|" h(z)x(t-7)dz
Given that h(t) = (t+2)+ 25 (t+1),the above integral reduces to
x(t)*y(t)=x(t+2)+2x(t+1)
This signal x(t+2) and 2x(t+1) are plotted in Figure S2.8.

o0

X(r)h (t —r) = f

00

//12 X(t+2) //12

d d

Figure S2.8
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Using these plots, we can easily show that

t+3 2<t<-1
y(t): t+4, -1<t<0
2-2t, O0<t<1
0, otherwise
2.9 Using the give definition for the signal h(t), we may write
e >5
h(z)=e*u(-r+4)+e*u(r-5)=5e”, r<4
0, 4<7<5
Therefore,
e, 7<-5
h(-r)=1e™, >-4
0, 5<r<-4
If we now shift the signal h(- 7 ) by t to the right, then the resultant signal h(t- 7 ) will be
e, r<t-5
h(t—z')z g2t r<t—4
0, (t-5)r<(t—4)
Therefore

A=T -5, B=t—4.
2.10 From the given information, we may sketh x(t) and h(t) as show, in Figure S2.10.
(@) With the aid of the plots in Figure S2.10, we can show that y(t) = x(t) *h(t) is as shown in

Figure S2.10.
1
h(t)
X(t)
0 ¢« t
0 1 t
a 1 I\
.0« 1 l+a t
Therefore, Figure S2.10
t, O<t<a«x
o, a<t<l
y(t)= lra—tl<t<(@+a)
0, otherwise
(b) From the plot of y(t), it is clear that 9Y() has discontinuities at 0, & ,1,and 1+« . If we want dy(t)
dt dt

to have only three discontinuities, then we need to ensure that o =1.
2.11(a)From the given information, we see that h(t) is non zero only for 0 <t < oo .Therefore,

y(t)=x(t)*h(t)= I_Zh(r)x(t —7)dr
:J'j:ce‘3f(u(t—r—3)—u(t—r—5)df

We can easily show that (u(t—r—3)—u(t—r—5)) is non zero only in the range (t—5) <z <(t-3).

Therefore, for t <3, the above integral evaluates to zero .For 3<t <5, the above integral is

. _ayt-3)
y(t)=] evar =18
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For t>5, the integral is
(" a _(1‘376)6_3“_5) R
y(t)_J'lise dr_i3 =Ze (e -¢')

3
Therefore, the result of this convolution may be expressed as
fo’
1_g3t-®  —0<t<3
yt)=¢ ~ 3 ' 3<t<5
(1-e®)e?"® 5<t<w
\ 3
(b) By differentiating x(t) with  respect to time we get
dx(t)
—2=5(t-3)-5(t-5
ot (t-3)-5(t-5)
Therefore ,

_dx(t)
g(t) = a0

(c) From the result of part (a),we m ay compute the derivative of y(t) to be

*h(t) =ePu(t-3)—e*u(t -5)

0,
1 g3ty  —0o<t<3
dy(t -
% —J 3 ' 3<t<b
(1-e®)e?"® 5<t<w
\ 3 ’
This is exactly equal to g(t) .therefore , g(t) _dy®

dt
2.12. The result y(t) may be written as

yt)=--+e Ut +6)+e “ut+3)+eut) +e Put-3)+e " ut—6)+---
Intherange 0<t<3 ,we may write y(t) as
y(t) =---+e “Ou(t+6)+e “Ju(t+3)+eu(t)
—etlpe® Lo @0
=e'(l+e’+et+..)
4 1
l1-e

-e =

1
l-e
2.13. (a) we require that

Therefore , A= — -

Iy Lins _
(E) u[n]—A(E) uln-1]=4[n]

Putting n=1 and solving for A gives A= %

(b) From part (a),we know that
h[n] —éh[n ~1]=4[n]

h[n]*(5[n]—%5[n -1]=4[n]
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From the definition of an inverse system ,we may argue that
1
g[n] = &[n] —gé[n —1]
2.14. (a) We first determine if () is absolutely integrable as follows

f’ h(r)|dr = I:e’tdr =1
Therefore , is the impulse response of a stable LTI system .
(b) we determine if  h, (t) is absolutely integrable as follows

[ h@lde=]"e"|cos2t) dr =1

This integral is clearly finite-valued because € '|cos (2t)is an exponentially decaying function in
the range —oo <t <oo.Therefore, h,(t) isimpulse response of a stable LTI system.

2.15.  (a) We determine if h[n] is absolutely summable as follows

> Ih{K] = 3 k| cos(5h)|

This sum does not have a finite value because the function Klcos% k) increase as the value of k
4

increase .Therefore, h[N] cannot be the impulse response of a stable LTI system .

(b)We determine if h,[n] is absolutely summable as follows
x(-t)*h(-t)
Therefore, h,[n] is the response of a stable LTI system .

2.16. (a) True. This may be easily argued by noting that convolution may be viewed as the process of
carrying out the superposition of a number of echos of h[n]. The first such echo will occur at

the location of the first non zero samples h[X]. In this case, the first echo will occur at
n = N, will have its first non zero sample at the time location N, + N, . Therefore ,for all

values of n which are lesser that N, + N, ,the output y[n] is zero.
(b) False . Consider
y[n]=x[n]*hn]

0

= 3 X[kIhIn—K]

k=—0

From this

0

yIn-1= > x[k]h[n—1-K]
k=—o0
= x[n]*h[n-1]
This shows that the given statement is false.
(c) True. Consider

y(®) = x®)*h) = [~ x(x)h(t-7)dz
From this,
y(-)= [~ x(@)h(-t-7)dz
=[" x(-0)h(-t+7)dr
= X(—t)*h(-t)

This shows that the given statement is true.
(d) True .This may be argued by considering

y(®) = x®)*h(t) = [ " x(2)h(t - )dz
In figure S2.16 , we plot X(z) and h(t—7) under the assumptions that (1) x(t)=0
for t>T, and (2) h(t)=0 for t>T,.Clearly the product
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X(2)h(t—7) iszeroif t—T, >T,. Therefore, u(t)=0 for t>T +T,
X(7) h(t-)

M’\l t-T,

T
Tl T

Figure S2.16
(@) We know that y(t) is the sum of the particular and homogeneous solutions to the given
differential equation .We first determine the particular solution yp(t) by using the method
specified in Example 2.14. Since  we are given that the input is x(t) = e**P'u(t) for t>0 we
hypothesize that for t>0

2.17.

yp (t) — Ke(—l+3j)t .
Substituting for x(t) and y(t) in the given differential equation,
(—1+3])Ke M3t 4 4KeH3Dt = g2

This gives
(-1+3j)K+4K =1, 1
T 31+ )
Therefore ,
1 _
t) = —e(—1+3j)t , =0
O30
In order to determine the homogeneous solution, we hypothesize that
Yn (t) = Ae®
Since the homogeneous solution has to satisfy the following differential equation
dy, (t)
+ Ay, (t) =0,
ot Y (t)
we obtain

Ase® +4Ae™ = Ae®(s+4) =0,

This implies that s=-4 for any A .The overall solution to the differential equation now becomes
1 -1

A+ —=0, A=—"—
31+ ) 31+ j)

Therefore for t > 0,
1
t) =
)
Since the system satisfies the condition of initial rest, y(t) =0 fort < 0. Therefore,

[_e—4t + e(—l+3j)t] t>0

YO ==Ll el
(b) The output will now be the real part of the answer obtained in part (a).
y(t) = %[et cos3t +e'sin3t —e ' Ju(t).
2.18. Since the system is causal, y[n] =0 for n < 1. Now,
VId] =%y[0]+ X[1]=0+1=1
2= 2y H{2 =5 +0= 7

1 1 1
y3] :_Z V2] + (3] = o +0= o

. l m-1
y[m].= )
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Therefore,
1o
yIn] = ()" *uln—1]

2.19. (a) Consider the difference equation relating y[n] and w[n] for s,:
y[n] = ay[n—]1+ Awin]
From this we may write
=i+ 1)
and

win-1]= *y[n 1+ W[n—2]

Weighting the previous equation by 1/2 and subtractlng from the one before ,we obtain

1 1 a 1 a
win]--win-1]=—y[n]-—y[n-1]-——y[h-1]+—y[n-2]
2 B B 2p B
Substituting this in the difference equation relating w[n] and x[n] for S,.

fy[n]—fy[n 1]—fy[n 1+ y[n-2]=xn]

B B 2p 2p
Comparing with the given equation relating y[n] and X[n], we obtain
1, p=1
4

(b) The difference equation relating the input and output of the system S, and S, are
win] = win-2+xfn] andy[nl= 7 yin-2]+ wl

From these, we can use the method specified in Example 2.15 to show that the impulse response
of S, and S, are

h,[n] = (%)“u[n]
and
1.,
hy{n] = ()" uln]-

Respectively. The overall impulse response of the system made up of a cascade of S, and S, will be

h{n] = h[n]*h,[n] = 3" hy[KIh, [0 — k]
= i(l)k(i)"fkn[n—k]
2(2) &)™ n[n—k]
2 1,
= 2 Q)" =G -

2.20. (a)
J:uo(t)cos(t)dt = f;&(t)dt =1
(b)
fsin(zmw(t +3)dt =sin(6z) =0
(c) In order to evaluate the integral
[ u,@-)cos(@rr)dr,

consider the signal
X(t) = cos(27t)[u[(t +5) —u(t —5)]
We know that
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% =u,)*x®) = [ u,(t-0)x(@)dr

= fs u, (t —z) cos(2zr)dr
Now
dy | t:lzjiul(l—f)COS(ZH’[)dT

dx
Which is the desired integral. We now evaluate the value of the integral as

d - .
d—i | +=1=sin(2xt)|_,=0

2.21 (a) the desired convolution is
y[nJ=x[n]*hn]
= > x[kh[n—k]

:ﬂni(a/ﬂ)k for n>=0

:[(ﬂnﬂ_a"“)/(ﬁ_a)]u[n] for a #

(b) from (a)
n
y[nl= " {Zl} ufn]=(n+1) «"uln]

k=0
(© for n <=6

P {i(—lls) OXCTORY

for n>6
0 K n-1
= k=0

therefore

(8/9)(—1/8)"4",n <=6
o | (8/9)(=1/2)",n > 6

(d) the desired convolution is

y[n]= i x[k]h[n —k]
:x[(iliﬁ[n]+x[l]h[n—1] +x[2]h[n-2] +x[3]h[n-3] +x[4]h[n-4]
=h[n]+ h[n-1]+ h[n-2]+ h[n-3]+ h[n-4]
This is shown in figure s2.21

2.22 (a)the desire (19ures2.21
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yo= | X(@h(t-7)dr

t
_ _[O - N s U

t>=0
Then

o- (e —e ™) (f-a)ut) >a=p
' te™“u(t) > a=4

(b) the desire convolution is

o jfo x(z)h(t —7)dr

5
[h-nae. |, h(t=7)d7

This may be written as
y(t)=

.2 5
. e?tId ¢ —L e’ Idrt <=1

.2 3)
) 1ez(t_f)df—j2 e dr,1<=t <=3

5
-, 1ez(t‘f)dr,3 <=t<=6

10,6 <t

Therefore
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(1/2)e?[1—2e* +e ], t <=1
(1/2)e*'[e** +e ¥ —2e*],1<=t <=3
yo= | (1/2)e*'[e™® —e**'],3<=t<=6

10,6 <t

(c) the desire convolution is
y®= | x(@h(t-7)dz=| sin(zoh(t-)dr,

This give us
0,t<1
y(t)= |(@/m)[1-cos{z(t-1)}],1<t<3
2/ m)[cos{x(t—3)}-1],3<t<5
0,5<«t
(e) let
hO= hO- Zo¢-2)
where
4/3,0<=t<=1
t)= ’
n O {0,0therwise
Now Y ()=h(®)*x(t)=[ h(t)*x(t)]- %x(t—Z)
We have
wx= [ 4 4L bt bt
h, (©* x(t) Ll3[(ar+b)]dr glyat Jalt=1)" +bt-b(t-1)]
Therefore

1

y()= g[%aﬁ%a(t—l)z+bt_b(t_1)]- J[a(t-2)+b]=at +b=x(t)

U] x(t) periodic implies y(t) periodic .. determine 1 period only . we have
1

j’f(t—r—l)omj‘l(1—t+r)o|r=1+t—t2,—1<t<1
yi)= )7 2 4 2 2
; r ) 1 .3
_[Ifl(l—t+z')dr+_|.%(t—1—r)dz':t —3+T/4 2 <t<

The periodic of y(t) is 2.
2.23 Y(t) is sketched in figure s2.23 for the  different values of T.
Therefore

2.24 (a)we have given that h, = (n)+d(n—1). Therefore,
h,[n]*h,[n] = d[n]+26[n—1]+ S[n—-2]

A

y(®)




Figure s2.23

since
hinl= h[n]*Th,[n]*h,[n]]
we get
h[n]= h[n]+2h[n-1]+ h[n-2]
Therefore

h[o]= h[0] = h[0]=1

hi1l= hfl]+ 2h[0] = h[1]=3

hi2l= h[2]+ 2h[1]+ h[0]= h[2]=3

h3l= h[3]+ 2h[2]+h[1] = h[3]=2

h4l= h[4]+ 2h[3]+h[2] = h[4]=1

h[5l= hy[5]+2h[4]+h[3] = h[5]=0.
h,[n] =0 for n<0 and n>=5.

(b) in this case

Y[n]=x[n]*h[n]=h[n]-h[n-1].
2.25 (a)we may write X[n] as

N
x[n] (3)

Now the desire convolution is
y[n]= h[n *x[n]

= Zl: (1/3)™ 1/ 4)"*u[n—k +3]+i(1/3)"(1/4)”’ku[n—k +3]

=—0

By consider each summation in the above equation separately .we may show that

_ [a2*nps n<—4
ylnl= (1/11)4* n=—4

(1/4)"(1/11) —3(1/ 4)"3(256)(1/3)",n >=3
(b) now consider the convolution

ynl= [(178) [ J1*0¢ 4

We may show that

0,n<-3
yl[n] = n n
-3(1/4)" +3(256)(1/3)",n>-3
Also consider the convolution
Y,[n]=[(3)"u[-n—1]*[(1/4)"u[n+3]].
We  may show that
y,[n]= (12°/11)3",n< -4
1/4)"(1/11),n>-3

Clearly, y,[n]+y,[n]= y[n] obtained in the previous part .
2.26 (a) we have

Viln]=x[n]*%[N]= 3" x [K]x,[n—K]

=3 (0.5) uln+3-k]
k=0
This evaluates to
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y,[n]=x[n]*x,[n] :{2[1— @/2)"*1,n>-3

0, otherwise
(b) now
y[n]= X3[I’l] * yl[n] = yl[n] - y1[n =1]
Therefore
201-(/2)™%) + 21— 1/ 2)™*) = (1/2)™* n> -2
Ln=-3
0, otherwise
Therefore, y[n]= (1/2)"" u[n+3].
(c) we have
Y,[n] = X, [n]* X,[n]=u[n+3]-u[n+2]= & [n+3]
(d) from the result of part (c), we get
YInl= y,[n]* x[nl= x[n+3]= (1/2)"°u[n+3]
2.27 the proof is  as follows

A= y(nd()
= j: j: x(o)h(t - 7)d zdt
= j"; X(7) f:oh(t —7)dtdr

=" x(2)Ad()
= AA
5

2.28 (a) causal because h[n]=0 for n<0 stable because i(l)n =Z <o
n=0
(b)not causal because h[n] # 0 for n<0 stable because i 0.8)" =

n=-2

(c)anti- causal because h[n]=0 for n>0 unstable because ZO: @/2)" =

N=-o0

5<w

(d) not causal because h[n] # 0 for n<0 stable because 23: (5)" = 625 <o
4

n=—w0

(e) causal because h[n]=0 for n<0 unstable because the second term becomes infinite asn— oo

(f) not causal because h[n] = 0 for n<0 stable because Zw: |h[n]|= 305 <0
3

n=—0

(g)> causal because h[n]=0 for n<0. stable because i‘h[”]‘ =l<w

N=c

2.29. (a) causal because h(t)=0for t<0. stable because J.:|h(t)|dt =e?/4<w,
(b) Not causal because h(t) # 0 for t<0. Unstable because J:|h(t)| =00,
(c) Not causal because h(t) # 0 for t<0. a Stable because I:|h(t)|dt =e’2 <o
(d) Not causal because h(t) # 0 for t<0. stable because j:|h(t)|dt =e?/2<w
(e) Not causal because h(t) # 0 for t<0. stable because '[:|h(t)|dt =1/3<w
(f) Causal because h(t)=0 for t<0. Stable because Jj|h(t)|dt =1l<w

(9) Causal because h(t)=0 for t<0. Unstable because Iw|h(t)|dt =

2.30. We need to find the output of the system when the input is x[n]=0[n].Since we are asked to assume initial
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rest ,we may conclude that y[n]=0. for n<0.now,
y[n]=x[n]-2y[n-1],
Therefore,

y[0I=x[0]-2y[-1]=1,  y[1]=x[1]-2y[0]=-2, = y[2]=x[2]+2y[2]=-4
and so on. In closed form,
ylnl=(=2)"u(n).
this is the impulse response of the system.
2.31. Initial rest implies that y[n]=0 for n< -2. Now
y[n]=x[n]+2x[n-2]-2y[n-1].
Therefore,
y[-2]=1, y[-1]=0, y[0]=5, y[4]=56, y[0]=-110 forn =5.
2.32. (a) If ,then we need to verify
A[E) _EA(EJ =0
2) 2 \2

Clearly this is true.
(b) We now require that forn>0

O ORE
3 2 3 3
Therefore, B= -2.
(c) From eq.(P2.32-1), we know that y[0]+(1/2)y[-1]=x[0]=1. Now we also have
y[0]= A+B => A=1-B=3.
2.33. (a) (i) From Example 2.14,we have know that
1a 1
t)=|—-e" ——e u(t
10| 3¢ 2o )
(ii) We solve this along the lines of Example 2.14. First assume that Yy (t) isof the

Form Ke?' For t>0. Then using eq.(P2.33-1).we get for t>0

2Ke?+2Ke?=e? =>k=1
4

We know that y,(t) = 1521 for t>0. We may hypothesize the homogeneous solution to be of the
4

form
Yo (t) = Ae™
Therefore,
y,(t) = Ae® + %ez‘ ,  fort>0

Assuming initial rest. we can conclude that =0 for t<0. Therefore,

1 1
t)=0=A+— =>A=—
¥, () 2 2

Then,
1 1 _
y,(t) = [—Zea —Ze z }U(t)
(iii) Let the input be X, (t): ae®u(t) +pe”u(t) .Assume that the particular solution y, (t)is of
the form

y, (t)=K,ae®u(t) +K,pe*u(t)
For t>0. Using eq.(P2.33-1), we get
3K, ae®u(t) +2 K, pe*u(t) +2 K, ae®u(t) +2 K, pe*u(t) =« * +pe*.
Equating the coefficients of e* and €. On both sides, we get
K, =1/5 and K,=1/4

-2t

1
Now hypothesizing that y, (t) = Ze , We get
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y,(t)= %ae3‘u(t) +% pe’u(t) + Ae ™

For t>0. Assuming initial rest,
Yot)=0=A+a/5+B/4 =>A=-(a/5+p/4)
Therefore,

y3(t):{%ae3‘+%Be2‘+Ae‘2‘}u(t)

Clearly, Y3(t):0‘y1(t) +BY, ().
(iv) for the input-output pair Xl(t)and y, (t), we may use eq.(P2.33-1) and the initial rest
Condition to write
dy, (t)
dt
For the input-output pair Xz(t) and Y,(t), we may use eq.(P2.33-1) and the initial rest
condition to write

dyét(t) +2y,(t) = X, (1), y,(t) =0 fort<t, (52.33-2)
Scaling eq.(S2.33-1) by a and eq.(S2.33-2) by B and summing, we get

S+ B, O+ 20,0 + .0} =, 0 + 5, 0,

+2y,()=x@1),  Y.()=0 fort<t, (S2.33-1)

And
y,(t)+y,(t)=0 for t<min(t,,t,)
By inspection, it is clear that the output is y3(t):a y,(t) +BY,(t) when the input is
X,(t)=ax (t) +BX,(t). Furthermore, y,(t)=0fort< t,, where t, denotes
the time until which X, (t)=0.
(b) (i) Using the result of (a-ii), we may write
y® =4 —e b

(if) We solve this along the lines of Example 2.14. First assume that Y, (t) is of the form KY e? " for
t >T. Then using eq.(P2.33-1), we get for t>T
2ke’ D2 ke* M= e => K=1/4.

K
We know that yp(t) :Zez(t‘” for t<T. We may hypothesize the homogeneous solution to be of

the form
Y, (£) = Ae™.
Therefore,
Y, (t) — Ae’2t + %ez(t’” for T.

Assuming initial rest, we can conclude the Y, (t) =0 for t<T, Therefore,

v, =0=Ae? + K = A=-Ke™
4 4
Then,
K

| ™ am2(t-T) E 2(t-T) _
yz(t)—[ 1€ e }u(t T
Clearly, y,(t)=y,t-T).
(iii) consider the input-output pair X, (t) — vy, (t) where X, (t)=0 for t<t,. Note that
dy, (t)
dt
Since the derivative is a time-invariant operation, we may now write

+2y, (1) = X, (1), y,(t) =0 fort<t,
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W"'Zyl(t_-r):xl(t_-r)a yl(t) =0 fOI"{<t0

This suggests that if the input is a signal of the form X, (t) = X, (t —T), then the output is a signal
of the form y, =y, (t—T).Also, note that new output Y, (t) will be zero for t<t,+T. This

supports time-invariance since X, (t) is zero for t<t,+T. Therefore, we may conclude that the
system is time-invariant.

2.34. (a) Consider X,(t)—>y,(t) and X,(t)—>vy,(t) .We know that Y, (t) =y, (t) =1. now
consider a third input to the system which is X, (t) = X, (t) + X, (t) . Let the corresponding output be

Y5(t) . Now , note that y,(1) =1=y,(1)+ Y, (). Therefore, the system is not linear. A specific
example follows.

Consider an input signal X, (t) = e*u(t) .Form Problem 2.33(a-ii), we know that the
corresponding output for t>0 is

-2t

y, (1) = %eﬂ + Ae
Using the fact that Y, (t) =1, we get for t>0
1 €\ —2(t-1)
t)=—e"+(1-—)e
%= +1-5)

Now. Consider a second signal X, (t) =0. Then, the corresponding output is
Y2 (t) =Be™
For t>0. Using the fact that Y, (1) =1,we get for t>0
Y, () =e*
Now consider a third signal X;(t) = X, (t) + X, (t) = X, (t) .Note that the output will still be
Y5 (t) =y, (t) for t>0. Clearly, y,(t) = vy, (t) + Y, (t) for t>0. Therefore, the system is not linear.
(b) Again consider an input signal X, (t) = e®'u(t) . From part (), we know that the corresponding
output for t>0 with y, (1) =1 is
1 5 €, 2t
)=—e"+(1-—)e
y; (1) : ( 4)
Now, consider an input signal of the form x, (t) = x,(t —=T) =e*“Pu(t —T). Then for t>T,
y,(t) = %ez(t” +Ae™
Using the fact that Y, (1) =1 and also assuming that T<1, we get for t<T
1 2(t-T) 1 2(1-T) y  —2(t-1)
t)==e +(@1-=e e
Y (t) 2 ( 2 )

Now note that for t>T. Therefore, the system is not time invariant.
() In order to show that the system is incrementally linear with the auxiliary condition specified

as Y, (1) =1, we need to first show that the system is linear with the auxiliary
Condition specified as y, (1) = 0.

For an input-output pair X (t) and y,(t) , we may use eq.(P2.33-1) and the fact that
Y, (1) = Oto write

MO oy m=x®)  w@®=0 (52341

dt
For an input-output pair X, (t) and y, (t), we may use eq.(P2.33-1) and the initial rest condition to
write
—dyét(t) +2y,(1) = %,(0), y,(1)=0
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Scaling eq.(S2.34-1) by « and eq.(S2.34-2) by /8 and summing, we get

S+ £Y.0)+ 2@y, 0+ 1,0} = ax () + 1,00
And
;D) =@ +y,)=0
By inspection, it is clear that the output y,(t)=ay,(t)+Ay,(t) is when the input
is X, (t) = ax,(t) + X, (t) .Furthermore; y,(1) =0 =y, (1) + y, (1) therefore, the system is linear.

Therefore, the overall system may be treated as the cascade of a linear system with an adder
which adds the response of the system to the auxiliary condition alone.
(d) In the previous part, we show that the system is linear when y)=0. In order to show that the

system is not time-invariant, consider an input of the form x (t) =e®u(t)-
From part(a), we know that the corresponding output will be

-2t

y,(t) = %ezt + Ae

Using the fact that y; (1) = 0, we get for t>0

—2(t-2)

1 1

t)=—e"-=¢e

h)=7¢" -5

Now consider an input of the form x, (t) = x (t—1/2) . Note that, )_. Clearly,

y,(t) = y,(1-1/2) = (1/ 4)(e —e®). Therefore, Y, (t) # Y, (t =1/ 2) for all t. This implies that the

system is not time invariant.
(e) A proof which is very similar to the proof for linear used in part(c) may be used here. We may show
that the system is not time invariant by using the method outlined in part (d).

2.35 (a) since the system is linear, the respond Y, (1) = O for all t.
(b) Now let us find the output Y, (t) when the input is X, (t) . The particular solution is of the form

y,)=Y, t>-1
Substituting in eq.(P2.33-1),we get
2Y=1.
Now, including the homogeneous solution which is of the form 'y, (t) = Ae™ .we get the overall

solution
Y, (t) = Ae™® +%, t>-1

Since y(0) =0, we get
Y, (t) e
? 2 2

For t< -1, we note that X, (t) =0. Thus the particular solution is zero in this range and

Y,(t) = Be™, t>-1
Since the tow pieces of the solution for Y, (t) in ags.(S2.35-1)and (S2.35-2)must match at t= -1, we
can determine B from the equation

Which yields

11 ot < -
yz(t)z[a_iezje 2(t+1) 4 t 1

Now note that since x1 (t)= x2 (t) for t<-1,it must be true that for a causal system y1 (t)= y2 (t) for
t<-1.However the results of parts(a) and (b) show that this is not true. Therefore ,the system is not causal.

2.36. Consider an input x, [n] such that x, [n]=0 for n<n, .The corresponding output will be

Vi = y.[HLx [,y [=0fornen,. (52.36-1)
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Also, consider another output x, [n] such that x, [n] =0 for n<n, The corresponding output will be
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Chapter 3 Answers
3.1 Using the Fourier series synthesis eq. (3.38)
X(t) — alej(z”/T)t +a le_j(Z”/T)t +a3ej3(2”/T)t +a 3e_j3(2”/T)t
— 2ej(27r/8)t + ze—j(2n/8)t +4ej3(27r/8)t _4e—j3(2;r/8)t
V4 . br
= 4cos(=t) —8sin(—t
cos(4 ) —8sin( 3 )

T I, &«
= 4cos(zt) +8cos(7t+5)
3.2 Using the Fourier series synthesis eg. (3.95)
x[n] =a, + a2e12(2n/N)n n a_ze—jZ(zzz/N)n 4 a4€j4(2zr/N)n " a_4e‘j“(2”/N)“
— 14 iNgi22a/5N | o-ix/4)g-i22a/5)n

=1+ 2cos(4—”n+£)+4cos(8—”n+£)
5 4 5 3
=1+ 25in(4—”n+3—”)+4sin(8—ﬁn+5—ﬂ)
5 4 5 6
3.3 The given signal is

X(t) — 2 +1ej(2”/3)t +1e—j(27r/3)t _ 2jej(57z/3)t + 2je—j(5ﬂ'/3)t
2

_ 2+1ej2(27r/6)t +le—j2(2ﬂ/6)t _ 2jej5(2ﬂ/6)t + 2je—j5(27r/6)t
2

Form this we may conclude that the fundamental frequency of x(t) is 2z/6 = z/3. The non-zero Fourier
series coefficients of x(t) are

8 =2 ,_5-1 aS:a*_Sz_Zj

348ince w,=7n , T =2x/w,=2, Therefore,

1 ~jkrt
a, _Ejo X(t)e " dt

Now ,

1 e1 1 e2
a, = Ejol.5dt _EL 1.5dt =0
and for k=0

a = E_.'11.5e‘”""dt —lle.Se‘jk”‘dt
270 21

3 .
L s
2k7rj[ |
3 .k
= Ge“k‘”/z) sin(—=)

3.5Both , q_pand -1 are periodic with fundamental period T 2% Since y(t) is a linear combination of
ey

x@-t) and x (t—1) ,itisalso periodic with fundamental period T2 Therefore w, = .

@y

Since x (t)«=»a, -Using the results in Table 3.1 we have
)(1(t +l) (i)akejk(Z”/Tl)
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Xj_ (t _1) FS ake—jk(Zn'/Tl) — Xl(_t + 1) FS a,ke_ k2r/T)
Therefore
X (-1 +x1-t)«2>aek®™ 1aq e MW —gk (g t+a )

3.6 (a) Comparing X, (t) with the Fourier series synthesis eq. (3.38) , we obtain the Fourier series coefficients

X,(t) tobe
(1
(E)k 0<k<100

0,otherwise
X (t)

.

Form Table 3.1 we know that if %® is real ,then a, has to be conjugate-symmetric,
i.e, ak =a —_k Since this is not true for , the signal is not real valued .
Similarly , the Fourier series coefficients of , ) are

( cos(kr),100<k<100

a, =1

0,otherwise

\§
Form Table 3.1 we know that if X, (t) is real ,then &, has to be conjugate-symmetric,
ie, a =a _, Sincethisisnottruefor x,(t),the signalis real valued .

Similarly , the Fourier series coefficients of , ) are

( jsin(kz/2),100<k<100

a, =+

0,otherwise

"

Form Table 3.1 we know that if X,(t) isreal then @, has to be conjugate-symmetric,
*
i.e, ak =a —k  Since this is not true for

>4 ce) , the signal is real valued .

(b) For asignal to be even, its Fourier series coefficients must be even . This is true only for
3.7 Given that

x(t)«Eoa,
we have
d e L2
90 -2 sp - j2q
Therefore ,
W__ b k=0
K i@k
When k=0
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a, :lj x(tydt =2 using given information
T <> T

Therefore ,

a =

_L‘k¢0
j(27/T)k

3.8 Since x(t) is real and odd(clue 1), its Fourier series coefficients a, are purely imaginary and odd
(See Table 3.1) Therefore , 5 -4, and @, =0,Also since it is given that a —o for K|>1, the
only unknown  Fourier series coefficients are a and .Using Parseval’s relation

1 2 = 2
= LT>|x(t)| dt=>|a,|
k=—0
for the given signal we have
1 2 1 2
> [[x)f dt=>[a]

k=1

Using the information given in clue (4) along with the above equation,
af+faf-1 =  2af =1

Therefore
1 or 1
=—a,=— —_aq =
2 2] %= J2j

The two possible signals which satisfy the given information are

t)=—= @/ __= i __ [osin(xt

and

Xz(t)=_i'ej(z;r/z):+%efj(zﬂ/z):=\/§Sin(m)
J

2j
3.9 The period of the given signal is 4 .Therefore,

1 3 _i2%n _i
a, :ZZX[n]E K :%{4+8e ’ZK}
n=0

This gives
a, =3, a=1-2j a,=-1 a,=1+2]j
3.10. Since the Fourier series coefficients repeat every N, we have
& =a5 » a=a, and a,=a,
Furthermore ,since the signal is real and odd ,the Fourier series coefficients a, will
be purely imaginary and odd . Therefore, a, =0 and
a=-a, aQ=-a, a; =—a,
Finally
a,=-]j a,=-2] a,=-3]

3.11 Since the Fourier series coefficients repeat every N=10,we have 5 —5 -5 Furthermore ,since x[n] is
real andeven, &  is also realandeven .Therefore a —a, =5 We are also given that

1 z
E;|X[n]| =50

Using Parseval’s  relation,

> |ak|2 =50
k=<N>
8 2
> la| =50
k=1

8
la, P +la " +a,° + ) |a [ =50
k=2

8
a02+2|ak |2:0
k=2
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Therefore a, =0 fork=2,....8, Now using the synthesis eq. (3.94) , we have

2%k 27y
= > ae'v =Yaen"
k=<N> k=-1
vy 27

n

i=n -
=51 +5e " _19c0s(Zn)
5
3.12. Using the multiplication property (see Table3.2) ,we have

3

)(1[”])(2[”]<i> z ab, :Zalbk—l

I=<N> k=0
<> af+ab +ah ,+ap,,
«E b +2b_,+2b_,+2b .
Since b, is 1 forall values of k, it is clear that b, +2b, ,+3b, ;will be for all values of k, Therefore,
x [n]x, [n]«=—6, forallk,
3.13 Let us first evaluate the Fourier series coefficients of ).Clearly ,since ) is eal and odd, &, is purely
imaginary and odd Therefore, a,=0. Now,

a = 1@ “i(2rig)kt
k : L x(t)e dt

- 1j4e—j(2n/8)ktdt_EJAe*j(ans)ktdt
8 8-

-1 i
=L h-e]
jrk
Clearly, the above expression evaluates to zero or all even values of k Therefore.
ak =(0,k =0,+2,+4-.
_L,k =41,+3,45---
JE:S

When (t)is passed through an LTI system with frequency response H(jw), the output y(t)is given by (see
Section 3.8)

y()= 3 a,H(jka, e
K=o

Where , _27 _x, Since @, isnon zero only or odd values of k, we need to evaluate the above summation
T 4
only or odd k, Furthermore ,note that
_sin(kz)
k(z/4)

H (jka,) = H(jk(z/4))

is always zero or odd values of k, Therefore,

y(t) =0,
3.14 The signal x[n] is periodic with period N=4, Its Fourier series coefficients are

13 -j2kn
a, = ZZX[”]G
0

n=

_1  forallk
2
From the results presented in Section 3.8 , we know that the output y[n] is given by

3 _ _
y[n] = k§=0 a,H (e i(27/4)k )ejk(z”/A)n
= 1) p(ei2 )it
4H(el )+4H(e' k!

1 . . 1 /.
+ i(3712) \Wi(37/2) i(m) i)
—Hle +—Hle
oo Lo
From the given information , we know that y[n] is
= St 7w
yInl= cosZn+Z
&+

= V4 T
cos(—-n+—
Gn+2)
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Tz Tz
1 J(;n"i) +1e*1(5"+2)

2 2
T LT T
= EeJ(E'HZ) +£el(35n*1)
2 2

Comparing this with eq. (S3.14-1), we have
He®)=H(e")=0
And
H (ejz) = Zeji, and H (e3j%) = ge'j%’
3.15 From the results o Section 3.8,

y(t)= > a H(jkae, "
K=o

Where  _2z _,,,Since H(jo) is zero for | >100, the largest value of |k| or which @, is nonzero should
y ==
T
be such that
ke <100

This implies that |k| <8, Therefore , for |k|>8, a, is guaranteed to be zero.
3.16 (a) The given signal X, [n] is
Xl[n] — (_1)n — ej;zn — ej(2;r/2)n
is periodic with period N=2 and it’s Fourier series coefficients in the range o<k<1 are
a,=0 and g -1
Using the results derived in Section 3.8, the output y,[n] is given by

y,[n]= Zl: aH (e j2k/2 )ek<2n/2>
k=0

=0+ alH(ej”)ej”
= O,
(b) The signal  [] is periodic with period N= 16 The signal , ,; may be written as

Therefore

" x[n]

xz[n] - ej(2;r/16)(0)n _(J /2)e(;r/4)ej(2;r/16)(3)n +(j/2)e—j(;r/4)e—j(2;z/16)(3);r
— ej(2;r/16)(0)n _ (J /2)e(7r/4)ej(2n/16)(3)n 4 (J /2)e—j(;z/4)e—j(27z/16)(13)7r
Therefore, the non-zero Fourier series coefficients of x [n] intherange o<k <15 are
a, =1  a,=—(j/2)el""?,
Using the results derived in Section 3.8,the output y,[n] is given by

15 _
AUESXWICE
k=0
= 0— (j/z)ej(zr/4)ej(27r/16)(3)n T (J /Z)e—j(zz'/4)ej(27z'/16)(3)n
= sin(g—”n+4—ﬂ)
8 4
(c) The signal , [, may be written as

wlnl=| ol |* Soln- 4]~ aln o]

where g[n]:(%)nu[n] andr[n]:i&[n—4k] .Therefore, y,[n] may be obtained by passing the signal r[n]

through the filter with frequency response H™) , and then convolving the result with o[n]"
The signal r[n] is periodic with period 4 and its Fourier series confidents are

a =1, forallk (See Problem 3.14)
k

4
The output g[n] obtained by passing ] through the filter with frequency response H (™) is

q [n] =g a, H (eszsz)ek(ZnM)

— (U 4)H ()6l + H(e2)e )12 4+ H(eI)el 4 H(e/*r/2)g tr/2
=0
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Therefore ,the final output y,[n]=q[n]*g[n]=0

3.17 (a ) Since complex exponentials are Eigen functions of LTI systems , the input x (t)=e’s has to produce
an output of the form Ae™ |, where A is a complex constant . by clearly , in this case the output is not of
this form. Therefore . systems S, is definitely not LTI.

(b)This sys tem may be LTI because it satisfies the Eagan function property of LTI systems.

(c)In the case , the output is of the form vy, (t)=(1/2)e* +@/2)e® . Clearly, the output contains a complex
exponential with frequency —5 which was not present in the input x,(t).\We know that an LTI system can
never produce a complex exponential of frequency -5 unless there was complex exponential of same
frequency at its input, Since this is not the case in this problem, s_ is definitely not LTI.

3.18 (a)By using an argument similar to the one used 8in part (a ) of the previous problem , we conclude that
S, is definitely not LTI.

(b)The output in this case is y,[n]=e!®"2" =g 1=/2" . Clearly this violates the eigen function property of
LTI systems . therefore, s is definitely not LTI.
(c) the output in this case is y,[n]=2e®"'2" = 2¢7I*'2" . This does not violate the eigen function property of

LTI systems. Therefore,s, could possibly be an LTI system.
3.19 (a)voltage across inductor = dy(®) .
dt
Current through resistor = L dy(®) .
R dt
Input current X(t) = current through resistor + current through inductor

Therefore,
L dy(t)

X(t) = R dt +y(®)

Substituting for R and L we obtain
YO,y = x
a YT
(b)Using the approach outlined in Section 3.10.1, we know that the output of this system will be H(jm)e

jot

when the input is €°“" .Substituting in the differential equation of part (a),
joH (jo)e* + H(jw)e* =e*
Therefore,
. 1
H(jw)= o
(c)The signal x(t) is periodic with period 27z .Since X(t) can be expressed in the form
x(t) = %ej(Zﬂ/Zn)t +lefj(27z/27r)t

the non-zero Fourier series coefficients of X(t) are

alza_lzl
2

Using the results derived in Section 3.8 (see eq.(3.124)),we have
y() =aH(j)e" +a H(-je”
1 efjt)
1-j
=@/ zﬁ)(e—jnMejt +ejn/4e—jt)

= (1/2) cos(t - %)

3.20. (a) Current through the capacitor = _y -
dt

(1 2) (el
1+ ]

Voltage across resistor = gc dy®) .
dt
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Voltage across inductor = | ¢ 4°¥(t) d?y()

dt?
Input voltage = Voltage across resistor + Voltage across inductor + Voltage across capacitor,
Therefore,

X(t) = Lcddi’z(t) rc W dy(t) +y()

Substituting for R,L and C, we have

d’y(t) dy(t)
dt?

+y(t) =x(t)
(b)We will now use an approach similar to the one used in part (b) of the previous problem. If we assume that

the input is of the form e then the output will be of the form H(jw)ei Substituting in the above

differential equation and simplifying , we obtain
1
-0’ + jo+1
(c)The signal x(t) is periodic with period 27 ,Since X(t) can be expressed in the form
X(t):i-ej(Zﬂ/Zf[)t7ie—j(2ﬂ/2f[)t

H(jw) =

2j
the non-zero Fourier series coefficients of X(t) are
1
a
a=a,= 57 J

Using the results derived in Section 3.8(see eq.(3.124)), we have
y(t)=aH(j)e" —a H(-j}e
—@2itet e
J —J
=(-1/2)(e" +e 1)
=—cos(t)
3.21. Using the Fourier series synthesis eq.(3.38),
X(t) _ alej(er/T)l 4 aile—j(Zn/T)l +a5ej5(27r/T)l 4 aise—jS(ZHIT)t
— jej(er/8)t _ je—j(erIS)t +2€j$(2/r/8)t +2€—j5(27z/8)t

. T 5
=-2sin(—t) +4cos(—t
(4 ) (4 )

=-2 cos(%t —-rl2)+ 4cos(57”t)

S0k
322.(@) (i) T=1a,=0,a, = J(kl) k=0
T

(ii)Hear,
t+2, -2<t<-1
xt)=4 1, -1<t<1
2-t 1<t<2
T=6, a;=1/2, and
0, k  even
&= szsm(—)sm(—) k odd

(iii) T=3, ap=1, and

a, = [ % sin(k27 1 3) + 2e**" sin(kx 1 3)],k = 0

2k2
(IV) T=2! ) ak=1/2 ('l) , k;ﬁO

(V)
_cos(2kz /3) —cos(krz /3)

K jkz /3
Note that ag=0, ax eyen=0"
(Vi) T=4, wo=r/2, ap=3/4 and
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e "% cos(kr /2) —e " sin(kr 1 4)

a, , VK.
kz
k
(b) T=2a, =i[e—e’1], for all k
2(1+ jkrx)
(c) T=3, wo=2x/3, ,a0=1, and
Ze—jkerS e—jkfr
a, = sin(27k / 3) + — sin(zk)
3.23.(a)First let us consider a signal y(t) with FS coefficients
sin(kw/4)
EE Tk

Form Example 3.5,we know that * must be a periodic square wave which over one period is

1, |t < 1/2
vl = { 0, 1/2<|t| <2

Now , note that * , Let us define another signal * whose only nonzero FS coefficient is * , The signal * will

have FS coefficients
X k=0
dy = a + i = { 1”_‘:_"1'11 ot herwise.

Now note that * , Therefore , therefore , the signal * which is as shown in Figure S2.23(a).

3t x(t) ] _‘ 12 'x(tﬂ —»Hﬂ/z

— 10123 5 61718t

o123 456 7t

(@) . (b)
HRER! Figure S3.23
(b) First let us consider a signal y(t) with FS coefficients
b = sin(kz /8)
T 2z

From Example 3.5,we know that y(t) must be a periodic square wave which over one period is

1/2,|t|<1/4
y(©) =
0,1/4<t|<2

Now note that a, =b e/ .Therefore, the signal x(t)=y(t+2) which is as show in Figure S2.23(b).
(c) The only nonzero FS coefficients are a, = ail =jand a = aiz =2] .Using the FS synthesis
equation ,we got
X(t) _ aiej(Zﬂ/T)t +a 1eJ<2”’T)' +a, e2j(27r/T)t +a 2e—2j(27z/T)t
5 e »

- jej(ZnM)t . je—j(Zn/4)t +2je21(27[/4)t _2je—2j(2n/4)t
z(ﬂsin(%t)—%in(m) (b)
(d) The FS coefficients a, may be written as the sum of two sets of coefficients by and ¢y ,where
b=1,for all k
And
[1, kodd
“ ok
, Keven

The FS coefficients bk correspond to the signal
y(t) =D 5(t—4k)
k=—o0
and the FS coefficients ck correspond to the signal

2(t)= Y el2s(t - 2k)
k=—00

Therefore,
XO)=y®)+pt)= S S(t-4Kk)+ 3 eI - 2K)
3.24.(a) We have o o
aozéj:tdt+%j:(2—t)dt=1/2 1 1
a(t)
42 of 1| 2| 3 .




(b) The signal g(t)=dx(t)/dt is show in Figure S3.24

Figure S3.24
The FS coefficients by of g(t) may be found as follows:

1 12
b0=§jodt—§jl dt=0
and
_1 1 — jokt 12 — jkt
bk—zfoe‘ dt—ELe’ dt

-1 ik
(c) Note that

dx(t .
g(t) :#@bk — jrka,

Therefore,

1 1 ke
a :jk_ﬂbk :_ﬂzkz {1—6 * }

3.25.(a) The nonzero FS coefficients of x(t) are al=a.;=1/2.
(b) The nonzero FS coefficients of x(t) are b1= bfl =1/2.
(c)Using the multiplication property, we know that

0

2(t) = x(t)y(t) «=—>c, = > ab,,

|=—0

Therefore,
1 1
Ck = ak *bk :4—J§[k —2]—4—]5['( —+ 2]

This implies that the nonzero Fourier series coefficients of z(t) are c2= sz =(1/4j)

(d) We have z(t)=sin(4t)cos(4t)=sin(8t)/2

Therefore, the nonzero Fourier series coefficients of z(t) are c2=c-2=(1/4j)
3.26.(a) If x(t) is real. Then x(t)=x*(t).This implies that for x(t) real ax,= afk .Since this is not true in this case
problem, x(t) is not real.

(b) If x(t) is even ,then x(t)=x(-t) and ax=a.x. Since this is true for this case, x(t) is even.

(c) We have
_dx(t)

g(t) it

b = k2
TO

Therefore,

0,k=0
o {—k(l/ 2)(27z/T,), otherwise
Since by is not even.
3.27.Using the Fourier series synthesis eq.(3.38),

x[n] = a, +a,e/?@*'M" g e 12NN 4 g e +ae
=24 zejﬁISej(47r/5)n 4 2e—j7rlﬁe—j(4zr/5)n 4 ejmsej(s;rls)n 4 e—jﬁ/3e—j(8ﬂ/5)n
=2+4cos[(4zn/5)+ 7 /6]+2cos[(8zn/5)+ /3]
=2+4sin[(4zn/5)+ 27/ 3]+ 2sin[(8zn/5) + 57/ 6]

ja2zIN)n ja2zIN)n

3.28.(a)N=7,
:le’“"”’7sin(57rk/7)

7 sin(zk/7)
(b)N=6,ak over period (0 <k<5) may be specified as:a0=4/6,

. 2rk
in(—)
a _1efyzk/2 3 1<k<5
“T 6 ook, T
sm(?)

(c)N=6,
a, =1+4cos(zk /3) —2cos(27k /3)
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(d)N=12,ak over one period (0<k <11) may be specified as: aj:i_: A " =0

T T
Otherwise
(e) N=4,
a =1+ 2(—1)k(1—i) cos(”—k)
2 2
(f) N=12
a =1+ (17%)2 cos(%k) . 2(17%)2 cos(%k) ; 2(1+%)2 cos(%) o<+ 2cos(%)

3.29.(a) N=8,0ver one period (0<n<7)
X[n]=46[n-1]+46[n-7]+4jo[n—-3]-4jo[n—5]
(b)N=8,0ver one period (0<n<7)

13%"-77”]” ’%-77m7r
x[n]:i[ie sm{5(7+§)}+e sm{E(T,g)}
20 sing (e T ingt (N _%

sin{ (7, +3)% sin{; (512

(c) N=8,0ver one period (0<£n<7)

X[n]=1+(-1)" + 2cos(%n) +2cos(
(d) N=8,0ver one period (0<n<7)
1 3zn

zn zn
X[n] =2+ 2cos(—) +cos(—) + = cos(——
[n] (4) (2) > (4)

3zn
=)

3.30.(a)The nonzero FS coefficients of x(t) are a0=1,al=a,=1/2
(b)The nonzero FS coefficient FS coefficient of x(t) are bl= b= e */*/2
(c)Using the multiplication property, we know that
2
z[n]=x[n] Y[n]éck = Z ab,
1=-2

This implies that the nonzero Fourier series coefficients of z[n] are c0=cos( 7 /4)/2,
¢ =c,=e""*/2,c,=c,=ee " /4

(d) We have

. 2T T . 2T T 2z
z[n]=sm(T+Z)+sm(?n+z)cos(?n)
= . 27 xy 1 . Ar & . T
sm(?n+Z)+E[sm(?n+z)+sm(z)]

This implies that the nonzero Fourier series coefficients of z[n] are cO=cos( 7 /4)/2,

¢ =c,=e’"/4
3.31.(a)g[n] is as show in Figure S3.31.Clearly,g[n] has a fundamental period of 10.

1 1
I S
0 I 10 n
Figure S3.31 1 1

(b)The Fourier series coefficients of g[n] are b=(1/10)[1- g 17108 ]

(c)Since g[n]=x[n]-x[n-1],the FS coefficients ax and by, must be related as
bk =a, _e—](27r/10)kak

Therefore,

b, _ (1/10)[1,6*1(271/10)81(]

e = 1_g @0k — 1_ g Jr0k

3.32.(a) The four equations are
a+a+a,+a;=la,+ja,—a,—ja, =0
-a+ta,-a;=28—ja-a,+jg=-1
Solving, we got a,=1/2, a,= 1+j,a,=-1, a,=_1-i
4 4
(b)By direct calculation, a, :%[“ De-ik _g-kari?]

This is the same as the answer we obtained in part (a) for 0<k <3
3.33 We will first evaluate the frequency response of the system. Consider an input x(t) of the form e!** .From
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the discussion in Section 3.9.2 we know that response to this input will be yt)=H(jw)e™ .Therefore,
substituting these in the given differential equation, we got
H(jo) joe” +4e'* =e!*
Therefore,

H(jo)=
(o) jo+4

From eq.(3.124),we know that
YO = 3 aH(ika,)e

when the input is x(t).x(t) has the Fourier series coefficients ay and fundamental frequency @, .Therefore,
the Fourier series coefficients of y(t) are a H(jke,)-
(@) Here @,=27 and the nonzero FS coefficients of x(t) are @ =a, =1/2 .Therefore, the
nonzero FS coefficients of y(t) are

b =a,H(j27) =a H(-j27)=

-t Lt
S 2(4+j2r) 2(4- j2r)
(b)  Here, @, =27 and the nonzero FS coefficients of x(t) are &, =a, =1/2j and

a, =a’, =e'’* /2 Therefore, the nonzero FS coefficients of y(t) are
1 . 1
__* o b,-a,H(Cj)=—
2i@s jany D2 TR = T

ejzr/4 —jzl4
b, =a;H(j6r) = >

b, = a,H(j4r) =

& hcaHCje) =
@rjom) =2 =50 e

3.34.The frequency response of the system is given by
. o i 1 1
H =| eMedt=——
(j) L° 4+ja)+4—ja)

(@) Here,T=1and @, =27 and @, =1.forall k. The FS coefficients of the output are

) 1 1
=a H(jok)=
b= aH k) = ek
(b) Here, T=2 and w, =7 and,
_ | 0,keven
|1 kodd
Therefore, the FS coefficients of the outputs are
0,keven
b, =aH (jka,) = 1 . l ‘kodd
4+ jkz  4- jkz
(c) Here, T=1wp =27 and
1/2, k=0
ap=¢ 0 k even, k #0
n(rh/2)  k odd
Therefore, the FS coefficients of the output are
1/4, k=0
be = axH(jkwp) = { O kevenk#0
sinrk/2) [ 1 1 k odd
Tk d+j2nk T A=jimk

3.35 We know that the Fourier series coefficient of y(t) are b=H(j k wg)a,
where wy is the fundamental of x(t) and ay, are the FS
coefficient of x(t).

If y(t) id identical to x(t),then by = ax for all k. No thing that

H(j wo)=0 for |w| >250.We know that H(j k wo)=0 for |k| >18

(because wo=14). Therefore a, must be zero for |K| > 18.

3.36. We will first evaluate the frequency response of the system. Consider an input x[n] of the form
e ™" From the discussion in Section 3.9 we know that the response to this input will be y[n]=H(e!")
e ™" Therefore , substituting these in the given difference equation. We get

H(&)eM" — o H(e) = .
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Therefore,

H{j‘w) = __]_ - %e—j“".

Form eq. (3.131), we know that coefficients

y{n] - Z akH(ejz’wk/N)ejk(Z«/N)n
k=<N>
when the input is x[n]. X[n] has the Fourier series coefficients ax
and fundamental frequency 2/N. therefore, the Fourier series coefficients of y[n] are ax H (ejz”"’ N)

(a) Here, N=4 and the nonzero FS coefficients of x[n] are as=a 3 =1/2j.Therefore,the nonzero FS
coefficients of y[n] are

. -1
4 e LT .
by = ﬂl-H[éh” )= WM' by = oy H(e™0) = 25(1 — {1/4)ed3=it)’
(b) Here, N=8 and the nonzero FS coefficients of x[n] are a; =a,
=1\2 and a;=a,=1. Therefore, the nonzero FS coefficients of y(t) are

1 _ =iy _,__,__1___
b= 2(1 — (1/4)e-0778y’ by =0 H(e™) = 201 = (1/4)erm 5y

— 1
T o=@y (1= (/e

3.37 The frequency response of the system may be easily shown to be

” 1 1

Ry

1-Ze 172
2

by = a H (7™

by = apH{e*?) by = a_pH(e™1™/?) =

() the Fourier series coefficients of x[n] are
a=1/4, for all k
Also, N=4. Therefore, the Fourier series coefficients of y[n] are

’ 1 1 1
BNy o L - .
by = o H (e I= i [h TR 1- E‘E—Jrk.'il

(b) Inthis case, the Fourier series coefficients of x[n] are
ay = %{i + 2cos{km/3)], for allk.
Also N=6 . Therefore, the Fourier series coefficients of y[n] are

i . 1 1 1
by = g H{e2*1N) = Eil + 2cos(km/3)] [l - %e_ﬁ_*_‘fs R T Y

3.38 The frequency response of the system may be evaluated as

H(e®) = 4% — & 4+ 14+ e + 74

For x[n],N=4 and wo= 7/ 2 . the FS coefficients of input x[n] are
a=1/4, for all k
Therefore, the FS coefficients of output are

1 —fhT
by = acH (™) = 31 = &7/ 4 eIHT/2)

3.39 Let the FS coefficients of input be ax. the FS coefficients of output are of the form b= acH (™),
where Wo-277/3.Note that in the range 0<k <2, H(e™)=0 for k=1,2. Therefore, only b, has a
nonzero value among byin the range 0<k <2.
3.40 Let the FS coefficients of x(t) be ax
(a)x(t-to) is also periodic with period T. The FS coefficients by of x(t-to) are
by = %]T:c(t — tg)e K@/ Tt gy

—3k{2n /T)to
= £ ke /I(T)C_Ikpr"T}rdT
T

T
= oIk T,
Similarly, the FS coefficients of x(t-tp) are
cx = e?kZr Mg,

Finally, the FS coefficients of x(t-tp)+ x(t+to) are

di = by + ¢ = e K/ Thog, | K27/ Tog, — 9 cos(k2mty/T)ax
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(b)Note that ev{x(t)}=[x(t) + x(-t)]/ 2. the FS coefficients of x(-t) are
by = %Lx(q)e-ﬁi““‘)‘dt

= %LI(T}Ejt(Zw!T)TdT

Therefore, the FS coefficients of ev{x(t)} are

_a +b  a+a,

T2 2

(c) Note that Re{X(t)}=[X(t) + X (t)]/ 2. the FS coefficients of X (t) are

Cy

b = %fx*(t]e'j"(z*’T)idt.
T

Conjugating both sides ,we get
by = %Lz(t}e""‘”f’”‘dc =G

Therefore, the FS coefficients of Re{x(t)} are

_ach _acra

22

(d) the FS synthesis equation gives
)= S ape/K,

k=—00

Cy

Differentiating both sides wrt t twice ,we get

2 o= 2
d;g) _ E _kz%ateﬂzqnu_
k=—ox

By inspection, we know that the FS coefficients of d’x(t)/dt* are | 4" .
T2 ™

(e) The period of x(3t) is a third of The period of x(t). Therefore, the signal x(3t-1) is period with
period T/3. the FS coefficients of x(3t) arestill a, .Using the analysis of part (a),we know that the
FS coefficients of x(3t—1) is e *C=Mg,
3.41 Since a, =a_, ,we require that x(t)=x(-t).Also, note that since a, =a, ., . we require that

X(t) — X(t)e—jk(Alz/B)t
This in turn implies that x(t) may have nonzero values only for t=0, " 1.5,73,74.5,......
Since J”f’ x(t)dt=1.we may conclude that X(t)=s(t) for -0.5<t<0.5 Also. Since rs x(t)dt=2, We
-0.5 05
may conclude that x(t) =25(t—2/3) intherange 0.5<t <1.5.Therefore Xx(t) may be written as

z(t) = i (t—k3)+2 Y 8(t—3k—3/2).

k=mo0 koo
3.42 (a)From Problem 3.40(and Table 3.1),we know that FS coefficients of X*(t) are aik. Now, we
know Xx(t) is real, then X(t) =X (t). Therefore, a, =a’, .Note that this implies a,=a; .
Therefore,a, must be real.
(b)From Problem 3.40(and Table 3.1), we know that FS coefficients of X(-t) are a , .If X(t)
is even, then  X(t) = X(—t) .This implies that
a, —a
This implies that the FS coefficients are even. From the previous part ,we know that if x(t) is
real, then
a =a,
Using egs.(S3.42-1) and (S3.42-2), we know that a, = a: . Therefore, a, is real for all k. Hence,
we may conclude that a, is real and even.
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(c) Form Problem 3.40(and Table 3.1), we know that FS coefficients of x(—t) are a_,.If X(t)
is odd, then X(t) =- x(—t) .This implies that a =-a,
This implies that the FS coefficients are odd. From previous part ,we know that if X(t) is
real ,then
a =a, )
Using egs. (S3.42-3) and (S3.42-4), we know that a, =—a, . Therefore, a, isimaginary for all k.
Hence, we may conclude that a, is real and even. Noting that eq. (S3.42-3)require that

a, =—a,,we may also conclude that a,=0.
(d) Note that ev{Xx(t)}=[x(t)+ x(-t)]/2 .From the pervious parts, we know that the FS

coefficients of &v{x(t)} ,will be [&+a.].Using eq. (S3.42-2) ,we nay write the FS coefficients
2

of od{x(t)}=[x(t) —x(-t)]/ 2.From the previous parts, we known that the FS coefficients of

od{x(t)} as [a-a.1=Re{a, }.
2
(e) Note that od{x(t)}=[x(t)—x(-t)]/2. From the pervious parts, we know that the FS

coefficients of ev{x(t)} ,will be [a-a,]. Using eq. (S3.42-2) ,we nay write the FS
2
coefficients of od{x(t)} as [a-a.l=jim{a, }.
2

3.43 (a) (i)We have

z(t) = Z akejk?ih.
odd &

Therefore,
2(t+T/2) = Y apeltFiehr,
odd &

jkz
Since eJ =--1 for k odd
z(t+T/2) = —xz(t).
(ii) the Fourier series coefficients of x(t) are

1 T/2 ) 1 T )
“ = 5 fo z{t)eTRentdt + f o{t)e=ikent gy
T/2

1 T2 ) .
= & / [x(t) + z(t + T/2)e™7%7|eTkwot gy
[1]

Note that the right-hand side of the above equation evaluates to zero for even values of k if
z(t) = —z(t + T/2).

(b)The function is as shown in Figure S3.43.
Note that T=2 and wg= 7z . Therefore,

ak={ k even
Fos + T k odd

(c)No. For an even harmonic signal we may follow the reasoning of part (a-i) to show that x(t)= x(t+T/2).

t
-1 0 1 2 3 T
-1
(@) If a, or a, is nonzeFigure s3.43
x(t) =a, e+ .

and X(t+to) :aileijZH(tHO)/T +...

The smallest value of {t,}(other than {t,}=0 for which e*/>**’T =1 is the fundamental period. Only
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then is

x(t+t,) =a, e’

Therefore, b has to be the fundamental period.
(2)The period of X(t) is the least common multiple of the periods of e k2o

e@/MIt is T/k and  The period of e!@*'™"" and T/I. Since k and | have no common factors, the

. The period of

common multiple of T/k and T/l is T.
3.44 The only unknown FS coefficients are a ,,a,,a,and a,.Since X(t) is real .a = a: and
a,=a,.Since a, isreal, a =a, .Now,X(t) isof the form
X(t) = A cos(w,t) +cos(2w,t + &)
where W, =27 /6 ,Form this we get
X(t—3) = A cos(w,t —3w,) + A, cos(2w,t + & —6w,)
Now , if we need X(t) = -x(t-3) then 3w, 6w,

0 and should both multiple of 7 .Clearly, this is
a,=a,=0

and
X(t) = A cos(w,t)
Now using Parseval’s relation in Clue 5,we get

< 1
2 laf =laf +al =3
2

k=—

a|=1/2 Since a, is positive, we have

impossible,

Therefore, 1. Therefore, x(t)=cos(xzt/3).

a=a,=
2
3.45 By inspection, we may conclude that the FS coefficients of x(t) are
a,, k=0
Ve =9 B+ JC, k>0

B, — jC,.k <0

(a) We know from problem 3.42 that if x(t) is real, the FS coefficients of .{xt)} are Re{y, }therefore,

a, =8y,8, =By
We know from problem 3.42 that if x(t) is real jthe FS coefficients of Od{x(t)} are jI, {yk} .
therefore.

b) o, =a  andp, =4,
(c) the signals is
y(t) =1+ &rix()}+ s &viz(t)§ - Od fz(t)}

This is as shown in figure S3.45.

/2 712
5/2 5/2
e /2 /2 .
2 2
-1 0 1 2 3 4

Figure S3.45
3.46 (a) The Fourier series coefficients of z(t) are

C, =TLITZZanb,ej(“+l)W°te‘jkW°tdt
n |
=1 2.2.2,b5 (k(n+1))
n |
:Z anbk—n

(b) (i) Here ,To=3 and 2 7z /3.therefore
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C, =[36k ~30)+ 3 5(k + 30+ 55255"
Simplifying
C = sin{(k-30)27/3} n sin{(k+30)27/3}
k ™ 3(k-30)27/3 3(k+30)27/3
And C,,,=1/3.

(if) We may express X, (t) as
X, (t)=sum of two shifted square waves x cos(20 7 t).
Here, To=3, ®,=2 7 /3. therefore,

_ 1 a—i(k=30)(27/3) sin{(k—30)2z/3 1 A—i(k+30)(27/3) sin{(k=30)27/3
Ck =3€ k30)2-/3 +3€ k+30)27/3 T
le—j(k—BO)(Zﬁ/S) sini(k—80)27/3} le—j(k+30)(27z/3) sin{(k+30)2z/3
3 k—30)27/3 3 k+30)27/3

(iii) here, To=4, w,= /2. therefore
¢, =[to(k-40)+ Lok + 40)}* ilkwo + e {sin w,t — cos it}

21+ (kw, )? |
Simplifying,
c.= j[(k — 40w, + e fsin(k — 40)w, — cos(k — 40)w, }]+ i[(k + 40)w, + e {sin(k + 40w, — cos(k + 40w, }]
4+ {k—2opw, /] aft+{(k+ 40w, § |

(C) From problom3.42,We know that bk=a:. From part (a),We know that the FS coefficients of
2(H)=x(t)y(t)=x(t) X~ (t)=| X(t) |* will be

Ck = Z anbn—k = Zanbn+k
n=-c P

From the Fourier series analysis equation ,We have
_1m 2 -iniT K S
Comr [hOr e ™= Yaa,

Putting k=0 in this equation ,We get

1T 2 X 2
ﬁjo|x(t)| dt=2la,|

3.47  considering X(t) to be periodic with periodl,the nonzero FS coefficients of x(t) are a,=a_, =1/2. If
We now consider x(t) to be periodic with period 3, then nonzero FS coefficients of x(t) are
b,=b,=1/2 .

3.48 (a) The FS coefficients of x[n-n, ] are

A N-1 _
ax =4 > x[n—n, e 2N
n=0
S27kwo N1

_%e” N zx[n]e—jZnnk/N

n=0
ak
(b) Using the results of part (a).the FS coefficients of x[n]-x[n-1] are given by

8, =a, —e g = h_eszﬂ/n]ak.
(c) Note the results of part (a). the FS coefficients of x[n]-x[n-N/2] are given by

a, =al-e*a, = 0 even
KoK “ " |2a, odd
(d) Note that x[n]+x[n+N/2] has a period of N/2. The FS coefficients of x[n]+x[n-N/2] are given

by

— g 12N /N

2,

aAk = NZ[x[n] +x[n+ ’;l]}e””k’?’“ =2a,,

n=0
forO<k<(N/2-1).
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(e) The FS coefficients of X [—nN] are
N N-1 _ .
a, = iz:x*[—n]e"z””’N =a,

N n=0

(f) With N even the FS coefficients of (—=1)"[n] are

—jmINyk-)

= iNzilx [n]e 2 =a
N e k—-N/2
(g) With N odd, the period of (—1)"[n] is 2N. therefore ,the FS coefficients are
Zm[k N] 2;m(k Nj
[Zx [ne +Zx [nje M\ 2 e ]

Note that for k oddTN is an integer and k-N is an even integer. Also, for k even ,K-N

integer r and e KN = 1 Therefore,

A a,_, ,odd
a, =9 2

0,even
(h) Here,
yir = bl + (-1 o] }
For N even ,
2 3
For N odd,

1
N Z{ak + akN},even
a = 2

1ak,odd
2

3.49 (a) The FS coefficients are given by
1N sz';"k
a4 = nZ(;x[n]e
N/2-1 2mk 1 N J2;)m<
= Z e N o+ = D .xnle "
N n=N/2
2pnk

N/2-1 _j2mnk e’JT (N/2)1 _j2ek
=— Z X[nle " v + > xnle M
n=0
_0’
For k even

(b) By adopting an approach similar to part (a),We may show that

l j’l . . ) —j2nkr
=y {1—e""‘”2 +e i +e’3'”"’2}x[n]e N
n=0

=0
Fork4r,ra 7
(c) If N/M isan integer We may generalize the approach of part (a)to show that

]zrr —jmar —jz2(M-1) —]i‘ﬂkﬂ
Z{l e e —e ) inle

Where B=N/M and r=k/m. form the above equation ,it is clear that
a, =0, ifk=rM, ra> 7

3.49 from Table 3.2,we know that if
x[n] «——a,
then ,
(_1)n x[n] = gl /NIN /2 x[nN«—=—a_y,,
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In this case, N =8. Therefore,
(_ 1)n X[n (i) A4
This implies that x[0]=x[ £+ 2]x[#4] =---=0.
We are also given that X[1] = Xx[5] =---=and = X[3]x[7] = —1.therefore , one period of x[n] is as
shown in Figure S3.50

| ———o
———o
|~
v

Figure S3.50 -1 -1
3.51.we have

ej4(27r/8)n x[n] —pim x[n] = (_]_)" x[n](i)a,(_4
And therefore ,
( )rH»lX[n]%)aK 4
If a, =a,, then x[0]=x[ + 2]x[+4]=---=0. Now ,note that in the signal p[n]=x[n-1], p

[+1] = p[+3] =---=0,now let us plot the signal z[n]:(l+(—1 )”)/2.
This is as shown in Figure S3.51.

Clearly, the signal y[n]=z[n]p[n]=p[n] because p[n] is zero whenever z[n] is zero. therefore , y[n]x[n-1].the FS

coefficients of y[n] are a_,€&" i(218)

3.52 (a)if x[n] is real , x[n]= X [n] .therefore,
a_k — zx[n]ejZHnK/N — a: .

n

From this result, we get b, =b,andc, =c , .

1
LT
0 2 3 4 n
Figure s3.51
(b) if N is even then
1 —jnz l n
iz ZNZX[n]e :NZ(—l) X[n] = real
(C) if N is odd then x[n] is
= Nzllza e 2/r/N
(N-2)12 .
=%t Ayt z ake‘z””“ +aN7keJ(2/r/N)(N—k)n
* :2/2 (27/N)k i(27IN )k
= ae' 7z e 7/N)kn
G+ Ayt kz " )

(N-1)/2

=a,+(-1)"ay, + z b, cos(2zkn/N)-c, sin(2zkn/N).

if N is even ,then x[n] is
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k=0
(N-2)/2
n j j N
:a0+(_1) Ay, + akeJ(ZJ/N)kn+aN7keJ(2”/N)(N k)n
k=1
(N-2)/2
n j *
:a0+(_1) ay, + akeJ(Z”/N)kn—akej(Z”/N)kn

=a,+(-1)"ay,+ Y. bcos(2zkn/N)-c,sin(2zkn/N).
k=1
(d)If a, =Ae'* then b =Acos(f,) and ¢ = Asin(d,) Substituting in the result of the previous
part ,we get for N odd:
(N-1)/2
x[n]=a,+2 Z Acos(g,)cos(2zkn/ N) —c, sin(6,)sin(2zkn/ N)
k=1
(N-1)/2

=a,+2 Y. Acos{2zkn/N+6,}

k=1

Similarly, for N even,
(N-1)/2

x[n]=a,+(-1)"ay,, +2 Z Acos(6,) cos(2zkn/ N) —c, sin(6, ) sin(2zkn/ N)
k=1

N-2)/2

(
=a,+(-D"ay, +2 Y, Acos{2zkn/N +6,}

(e)The signal is : 1
y[n] = d.c{x[n]}—d.c{z[n]}+ ev{z}+ Od{x}— 20d{z}
This is as shown Figure S3.52.

vinl 2 9/2 3 2
vee 32 | ||456|
T T
| |0 1 2 3 | | n
-1/2-2 -5/2 -1/2-2 -5 Figure S3.52
3.53.We have
a, :lzx[n]efj(zmu)kn
N<N>
Note that

8=~ 3]

<N>

Which is real if x[n] is real.
(a) If Niseven, then g . Z%Z x[nJe = ziz X[n](=1)"

<N> <N>

Clearly, a,,, isalso realif x[n] is real.

(b) If N isodd, only a, is guaranteed to be real.
3.54 (a)Letk =pN, P € 7 .Then,

N-1 N-1 N-1
a[pN] — zeJ(Zn/N)pNn — ZeIZﬂpn — 21: N
n=0 n=0 n=0
(b)Using the finite sum formula ,we have

1_ej2/rk .
-  _ if kepN,pPpert
alk] = =~ Sy = pN, P

(c) Let a[k] = q+Nilei(ZIr/N)kn

Where q is some arbitrary integer .By putting k=pN, we may again easily show that

g+N-1 g+N-1 q+N-1
a[pN]= Z ej(Z/[/N)pan Z e]erpn= z 1=N
n=q n=q n=q
N-1
Now a[k] — ej(2ﬂlN)qu:ej(2nlN)kn

n=0

Using part (b), we may argue that a[k]=0 for k= pN, P €T
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3.55 (a)Note that

X [+ mN]= x[n/m+N] o M _ xin/ml, =g =x_[n]
) 0 otherwise 0 m

Therefore, X.,[n] is periodic with mN.

(b)The time-scaling operation discussed in this problem is a linear operation. Therefore, if X[n]=v[n]+w[n],

then X, [n]=v_[n]+w,[n],

m-1 m-1
(C) Let us Cons|der y[n] — iZej(Z”/mN)(kOHN)n — lej(Zﬂ'/mN)anZej(Z;r/m)ln

miz m 1=0
This may be written as [From problem 3.54]
j(27/mN)kgn + +
y[n]:{e n=0, +N, 2N
0 otherwise

Now, also note that by applying time-scaling on x[n],we get
gltZ M on +N,£2N
X,[n]= n=0, — T ...

0 otherwise
Comparing eps .(s3.55-1)and (s3.55-2),we see that y[n]=
1 = —j(27/mN)kn
(d) We have b, = p— HZ:;‘ X [ @

we know that only every mth value in the above summation is nonzero. Therefore ,

b :iNz_lX [nm]e—j(Zn/mN)kmn :iNz’lX [nm]e—j(zﬁ/N)kn
X mN n=0 " mN n=0 "
N-1 _
Note that X, [NM]= x[n].Therefore, :ﬁ x[n]e 1®MK =q /m,
n=0
356 (a)Wehave x[n]<——a, and X [n]<E—a’,
Using the multiplication property,
XX [n] = XN <= > aa,
I=<N>

(b)From above ,it is clear that the answer is yes.

3.57.(a)We have N j(27/N)(Kk-+1)
1. x[n]y[n] = a be!FrMten
kZ:[;IZ:O: By
Putting | =k+1 we get
(N-1) (k+N-1) _ ‘
x[n]y[n] = z Z akbl‘_kel(er/N)In
k=0 I'=k

But since both bl‘—k and /@M are periodic with  period N, we may rewrite this as

(N-1) N-1 ) N-1 N-1

x[nlyln]= > > ab, M=% "ab Je!*0"

k=0 I'=0 1=0 k=
N-1
Therefore , Ck — zakbl—kck
k=0
By interchanging and ,we may show that
N-1
G = Zbkal—k
k=0
(b)note that since both &,  and b, are periodic with period N, we may rewrite
summation as

G = zakbl—k = Zbkal—k

(c)()Here ¢ = f%[ﬁ[l —3]+6[1-N +3]Ja,

1=0
Therefore  C, =38, +38,,5 4
(ii) period= N. Also
b, =+ for all k.
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Therefore, C, =+ > &

(iii) Here by, =L [1+e 127/ 4o 1477

Therefore, Ck :ﬁ [1+e—j27z|/3 +e7j4””3]ak7|
1=0

(d)period= 12.Also,
x[nN]«=—a,=a,=1/2, Allother a, =0, 0<k <11

and  y[n]«——b, =(&)dzklz  0<k<11

Therefore one period of C, is

_ sin{7z(k-2)/12} | sin{7z(k-10)/12}
¢ =Gl Ferom + oo 0<k<11

(e)Using the FS analysis  equation .we have

N Z ab,_, :z x[n]y[n]e 1=/

I=<N> <N>

Putting k=0 in this, we get
N > ab, => xInlyln]

|=<N> <N>

Now Let y[n]=x"[n], then b =a’, Therefore
N > aa =) x[nlxn]

I=<N> <N>

Therefore N Z EXS _Z| x[n] |2

I=<N> <N>

3.58 (a) We have

z[n+N]=> x[rly[n+N —r]

<L>

since y[n] is periodic with  period N, y[n+N-r]=y[n -r],Therefore

z[n+N]1=> x[rly[n—r]=z[n]
<L>
Therefore, z[n] is periodic with period N.
(b) The FS coefficients of z[n] are

C Zﬁ Z z akbn_kesznnl/m

n=<N> k=<N>

27Kl /N i27(n—K)I/N
Z ae Z b, &

k=<N> n=<N>
=+ Na,Nb,
= Nayb,
(c)Here n=8.the nonzero FS coefficient in the range 0<k <7 for x[n]
are a,=a, =1/2j.Note that for y[n] ,we need only evaluate b, and b.

Wehave b, =h,

Therefore ,the only nonzero FS coefficient in the range 0<k <7 for the periodic convolution of these
signalsare C, =8a,b, and c, =8a.b,

e](37r/7 —rk/4)4 ej(37r/7+/rk/4)4]

(d) Here X[n](—)a = 16] [1 e 1GRIT- Kia) 1_e 1G7/T+akT4)

And [n] (_)b [1 (1/5)-/92)“(”/4]

Therefore  z[n] = X[n]y[n]«——8ab,
3.59 (a) Note that the signals x(t) is periodic with period NT. The FS coefficients of x(t) are

NT & -
a, =7 [ [ Xplo(t—pT)k e/ dt
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Note that the limits of the summation may changed in accordance with limits of the integration so that we get
a, = [T IS ApIO(E - P e
Interchanging the summatio’;{oand the integration and simplifying
o= LRI ot~ pTe ek
P

N-1 )
— N_l'rz X[ pP—J(Zﬂ/N)pk
p=0

N-1
= (U/T)L/ND x[ple @],
p=0

Note that the term within brackets on the RHS of the above equation constitutes the FS coefficients of the
signal x[n].Since ,this is periodic  with period N, a, must also be periodic with period N

(b) If the FS coefficients of x(t) are periodic with period N, then
a =a_,.
This implies that
X(O=x(t) pl@r/T)Nt
This is possible only if x(t) is zero for all t other then when (27/T)N =27 k, where
k € | .Therefore x(t) is of the form

3" gIKIS(t—KT /N)

=0

(c) A simple example would be x(t)= i S(t—KkT)-
k

=—0

3.60 (a) The system is not LTI. (1/2)" is an eigen function of LTI systems. Therefore, the output should
have been of the form K (1/2)" .Where K is a complex constant.

(b) It is possible to find an LTI system with this input-output relationship. The frequency response of
this system would be H (€'“) =(1- (1/2) e *)/(1-(1/4) e ). The system is unique.

(c) It is possible to find an LTI system with this input-output relationship. The frequency response of
this system would be H (€'“)=(1- (1/2) e *)/(1-(1/4) e ). The system is unique.

(d) It is possible to find an LTI system with this input-output relationship. The system is not unique
because we only require that H (e'®) =2.

(e) It is possible to find an LTI system with this input-output relationship. The frequency response of
this system would be H (€'“) =2.The system is unique.

(f) It is possible to find an LTI system with this input-output relationship. The system is not unique
because we only require that H (e/”'%) =2(1- e!*'?).

(9) It is possible to find an LTI system with this input-output relationship. The system is not unique
because we only require that H (/%)= 1— j\ﬁ.

(h) Note that x[n] and Y, [n] are periodic with the same fundamental frequency. Therefore, it is
possible to find an LTI system with this input-output relationship without violating the Eigen
function property. The system is not unique because H (ej”’) needs to be have specific values
only for H(e!®**2%) Therestof H(e!”) may be chosen arbitrarily.

(i) Note that x[n] and Y, [n] are not periodic with the same fundamental frequency. Furthermore, note
that y,[n] has 2/3 the period of x[n].Therefore, y[n] will be made up of complex exponentials
which are not present in X[n].This violates the eigen function property of LTI systems. Therefore ,

the system cannot be LTI.
3.61. (a) For this system,

x(t) > [5®)] = x(t) -
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Therefore, all functions are eigenfunctions with an eigenvalue of one.
(b) The following is an eigen function with an eigen value of 1:

x(t) = 5t —KT)"

The following is an eigen functioFl with an eigen value of 1/2:
K = X () 6-KT):

The following is an eigen function l\</vith an eigen value of 2:
X(t) :Zk:(Z)k(S(t—kT) :

(c) If h(t) is real and even then H (w) is real and even.

“— — H(jo)e™
e - |H(jo)| > H(-jw)e ™ = H(jo)e .

From these two statements, we may argue that

cos(wt) = %[ej"" +e "> — H(jw)cos(awt) -

And

Therefore, cos(wt) is an eigenfunction. We may similarly show hat sin(wt) is an

eigenfunction.
(d) We have

#(t) —>[u®)] - 14(1)

Therefore,
A0 = poydr-
Differentiating both sides wrt t, we get

A¢'(t) = 4(7)-
Let #(0)=g,. Then
¢(t) = ¢oetu'
3.62. (a) The fundamental period of the input is T =27 . The fundamental period of the inputis T = 7 .the

signals are as shown in Figure S3.62.
(b) The Fourier series confidents of the output are

2(-1)"

KT Z(—4k?)
YON T4 YOR

ANIVANE VATAY
0 \T/ 2”\ ’ 7 27

Figure S3.62
(c) The dc component of the input is 0. The dc component of the output is 2/ 7.
3.63. The average energy per period is

1 ) 2 A 1+a’
—|Ix@Fdt=>|a| =) |a =
SJ(EC] §| [=Yla M=

We want N such that

S laF=09t

-N+1
This implies that
1-2a™ + 202 _l+oc2 .
1-o? T1-4?

Solving
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_log[L.45a” +0.95] .
- 2loge
And
ﬂ <W < (N ;rl)” .

3.64 (a) Due to linearity, we have

y(t) =D c A )

(b) Let
X (t) = y,(t) and X, (t) > y,(1).
Also, let
Xa(t) = a‘xl(t) +bX2 (t) —>Ys (t) .
Then,

y5(t) =[x (t) +bx; (t)] +tax, (t) +bx, (t)] = ay, (t) + by, ()
Therefore, the system is linear.
Now consider

X, (t) = x(t—t)) = y, ().
We have

dix(t—t,) . dx(t—t,)
t) =t 0+t 0
%0 a0

Therefore, the system is not time invariant.
(c) For inputs of the form ¢, (t) =t* .The output is

y(t)= Kt“=k?g, (t).

* y(t _to) ’

The output is
y(t)=10°t"" +3t +8t*.
3.65 (a) Pairs (a) and (b) are orthogonal. Pairs (c) and (d) are not orthogonal.
(b) Orthogonal. But not orthogonal. A =1/, .

(c) Orthogonal.

(d) We have
j(m-n)2z
J't“T g imanr g =inar - _ o J(M-Narty " '
0 (Mm—n)e,
This evaluates to Owhen m = n and to jT when m=n . Therefore, the functions are orthogonal but not
orthogonal.
(e) We have

[ %O @dt = % [ D)+ X010 - X0t = % [* et —% [ tdt=0

(f) Consider
b 1

1 1 beb
— t_ #tdt:— t #tdt'
L\/E(ék()\/xﬂ() mj‘aj‘a%()ﬂ()

This valuates to zero for k # 1. For k=I, it evaluates to A / A, =1. Therefore, the functions are

orthogonal
(9) We have
[ 1x@ Pt = [ x@x et
= [[>agi et
=Y Y a8 [ 4t Mt

=iZ|&I2-
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(h) We have
y(M) =" h(T-2),(z)dr

=[" 4 ()¢, (0)de
= ¢, =1for i=jand Ofor i&f
3.66. (a) We have
£ ['X0- Y. adOIX O~ 3 aigi 00

Now, let & =D, + jc,. Then

oE b« by

éazmyﬁﬁawmm+m—L¢aﬂﬂmt
And

OE b . L.

a_bizoz if ¢ OX Odt+2c - j[ 4 Ox®dt-

Multiplying, the equation by j and adding to the before. We get
2, =2jc, + [ x(O)¢ M)ct-
This implies that
a = j“ ()¢ ()t
(b) In this case, @; would be

1o "
L= — t)g (t)dt.
3 Ajax()qﬁ()

(c) Choosing

_ 1 - jout
a = jb x(t)e ' dt »

0

We have
N .
E= jT |x(t) - > ae ™ P dt-
0 k=—N

Putting 9E _,, we get
oa,

1 ~ ke
a :T_O-[Tu x(t)e *dt -

d) a,=2/7,a =a,=0,a,=21-232)/x,
a, =L/ 7)[2—4cos(7/8)+4cos(37/8)].

(e) We have
J,Z @A X0 - ZagOlt=3a [ xO4 Odt -3 Y a3, [ 4 OO
:Zafai—zi:afai =0 J
(f) Not orthogonal. Example: I:¢o(t)¢1(t) :.[oltdt —120.
(9) Here,

a, = J‘;etqﬁg(t)dt =e-1.
(h) Here, x(t)= a, +a;t . Therefore,
E=[ (' -a-at)(e -a,-at)dt.

Setting OE/0a, =0=0E/0a,, we get a,=c(2e-5) and &, =6(3-e).
3.67. (a) From e.g.(P3.67-1) and (P3.67-4), we get
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i ot _ 1250 00, (%)
27Z'nb X ejZirnt :_k2 n e]27mt .
2 j2nb, (et = Sk Y =
Equating coefficients of €'>™™ on both sides, we get
azbn(X) j47z'n
ox? = k2 bn(X)'
since  s®=4xn/k?,
k

for n>0,
s=2m(+j),
k

is a stable solution. for n<0,
27pn|(1- j)
k
is a stable solution. also, b , (0)=a, and

o 00 ane—\/ﬁ(lﬂ)x/k n>0
X)=
n ane—\/ﬁ(l-j)x/k

s5=-

,n<0
(c)b,=2,b,=(1/2j)e “ V" b_ =-(1/2j)e ¥~
T(kVz/2 t)=2+e "sin(2at-r),

Phase reversed.

3.68. (a)x(8) =r(8) cos(H) :% r(0)el’ +% r(0)e 17 .if
X(0) = ibkejk” ,
then b, =(1/2)a,,, +(1/2)a,_; .

(b) X(0) «—=—b, .then x(8) :r(9+%) .the sketch is as show in Figure s3.68

(c)b,=a,.rest of b, is all zero. Therefore, the sketch will be a circle of radius a,
as shown in figure s3.68.
d)(i) r(@) =r (-0) ,even. Sketch as shown in figure s3.68.
(ir( O + k) =r(6) .sketch as shown in figure s3.68.
(ii)r(@ + k1 2) =r( ) .sketch as shown in figure s3.68.

N
3.69.(a) Z¢k[n]¢*k[m]: ig[n_k]g[n_m] this is 1 for k =m and O for k = m.therefore,
n=—N

n=—N
orthogonal.
(b)we have
r+N-1 . . 1-— ej27z(k—m) 01 kK=m
_ ai@x/N)r(k-m) 1=
nZ:r: ¢ [nlg,[n]=e [1_ej(2ﬂ/N)(k—m) 1= N,k =m.

therefore, orthogonal.

SPRSERCN i C A b

) (b) M \)

(d-i) (c-ii) (c-iii)
(c)we have Figure S3.68



Z\X[n]\ —Zzaﬂnlza%[n] Zzaakz¢k[n]¢[n] ZzaakA5[l—k] Z\a\A

n=N, n=Ny i=1 k=1 i=1 n=N; k=1 i=1

(d) let —a, then
E - ZMM+ZW+MA§Z I3 (5, o ) ]~ 3 ¢ [n] 36+ e [n]

n=N; i=1 n=N; i=1

Set 9B/ =0.than

b ~[eAT| 3l e ol - £-ve| Sl

n=N;
Similarly,
c :;Im{nilx[n]qﬁi*[n]}
therefore,
a, =b, + jc, =—Z x[n}"[n]

'nN1

©) ¢ [n]=5[n—i] then,
= 3ol K1)

n=N,

3.70 (a) we get
— 1 (mm —jmayty p-jnwyt,
B =7 [ xlet, pmes et drgdt,

m

(b) () T, =1T, =x,a,=1/2,a, , =1/2.Rest of the coefficients are all zero.
(ii)here,
4 = {1/(7r2mn), m, nodd} .
™ |0, otherwise
3.71 (a)the differential equation f_(t)andf (t) is

B df, (t) _
K +f.(t)=f(t)

The frequency response of this system may be easily shown to be

H(jo)= ——

1+(B/K)jo’
Note that for @=0,H(jw)=1 and for @ —> oo, H(jw)= 0. Therefore, the system approxima as a
lowpass filter.
(b) The differential equation f (t)andf (t) is
(1), K ¢ (o &0)
dt B dt
The frequency response of this system may be easily shown to be

Hlio)= 1o cTs)

Note that for @ =0,H(j®)=0 andfor @ — o0, H(j@)=1.Therefore, the system
Approximates a highpass filter
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Chapter 4 Answers
4.1 (a)Let x(t)=¢2Yu(t —1).then the Fourier transform x(je)ofx(t) is :

X(jo)=[ 2 Dult—1)dt

= [0t = 0 12+ jo)

X (jo) is as shown in figure s4.1.

—2|t-1
(b) Let X(t) _ g " then the Fourier transform X (jw)ofx(t) is
X(jo) = [0 et = [T om0 g [0

I o) o) e ) |
X(je) 15 @s shown in figure s4.1 X (je |X(JCO]
‘J/ZK' ~J2\,
o lo
(@) @ (b) ®
figure s4.1
4.2 (a) Let x,(t)=&(t +1)+ &(t —1).then the Fourier transtorm  x_(jw)ofx(t) 1S :
Xy(jo)= [ [st+1)+ ot -1)) “dt =0 + 7 = 2cos 0
X, (jo) is as sketched in figure s4.2.
(b)the signal x,(t)=u(-2-t)+u(t—2) is as shown in the figure below .Clearly,
S lu2-0+ut-2)=5(t-2)-5(+2)
Therefore
X,(jo) = [ [5(t-2) - 5(t+2)e dt
— e72ja) _ erw
=-2jsin(2w)
X, (joo)| is as sketched i flgurjea§4 2. |X2 ( Jw)|
MV i AAA
312 —712 7l2 37/2 @ - ‘0 s @

figure s4.2
4.3 (a) thesignal x, (t) =sin(2zt + 7 /4) is periodic with a fundamental periodic of T=1.
This translations to a fundamental frequency of » =2, .the nonzero Fourier series coefficients of this
signals of this signal may be found by writing it in the form

X1 (t) _ (eJ (2nt+ml4) efj(27zt+;r/4))
2j
1 = girlfgiont _ 1 = gin/Ngiont
" 2] 2]
therefore, the nonzero Fourier series coefficients of X, (t) are
jrl4) —j2nt

1 . ; 1 - _
a,=—e"e? a, =—e e

2] 2]
Form Section 4.2 we know that for periodic signals, the Fourier transforms consists of train of impulse
occurring at Ka, .Furthermore, the area under each impulse is27z times the Fourier series coefficients
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a, .Therefore, for X, (t) the corresponding Fourier transforms X, (j@) is given by
X, (jo) =2ra,6(w-w,)+27a_0(0+aw,)
=(zl ))e"*S(w—-27)— (/] j)e "5 (w+27)
(b) The signal *®)=1+cos(6zt+7/8)js heriodic with a fundamental period of T =1/3  This translates to a
fundamental frequency of “ = 67 The nonzero Fourier series coefficients of this signal may be found by
writing it in the form
X2 (t) :1+%(ej(6m+n/8) +e—j(6m+/r/8))
1 1

:1+Eej/rlsej67zl +Eefj/rlsefj6m

Therefore ,The nonzero Fourier series coefficients of X, (t) are

1 . . 1 . .
=l, ziejﬂ/eejﬁm‘a =7e—1z/86716m.
g =La 5 175

Form Section 4.2 we know that for periodic signals, the Fourier transforms consists of train of impulse
occurring at K® Furthermore, the area under each impulse is 27 _times the Fourier series coefficients
A X (1) the corresponding Fourier transforms X, (1) is given by
X, (jo) =27a,0(w) + 2ra,0(w— ) + 278 ,6 (0 + a,)
= 2715 (@) + 725 (00— 67) + me *"° 5 (w + 671)
4.4 (a) The inverse Fourier transforms is

.Therefore, for

X, (t) =(1/27x) .T [2725 (@) + 78 (w—47) + 75 (w + 47)]e™dw

=/ 27)[27e* + rel*™ 4 e 1]
=1+(1/2)e"*™" +(1/2)e*"
=1+cos(4rt)

(b) The inverse Fourier transforms is

X,(t) = (U 27) [ X, (jw)e™"dw
7002 . 0 .
=(/2x) j 2eMdw+ j —2e™dw
0 -2

=% -D/(zjt)-(1—e)(zjt)
=—(4]sin?t) /(xt)
4.5 Form the given information
X(t) = (1/2;;)? X (jw)e™dw

= @27 [ X (wle™ " Meraw

3
=/ Zﬂ)j 2e723W e My
3

2 .
= =273 sin[3(t—2/3)]

The signal X(t) is zero when3=2/3) is a nonzero integer multiple of 7 this gives

t:k?ﬁ+2/3, fork e landk = 0

4.6. Throughout this problem ,we assume that
X(t) «——>X(jo)
(a) Using the time reversal property (Sec. 4.3.5), we have
X(-) «——>Xi(-jo)
Using the time shifting property (Sec. 4.3.2) on this, we have
X(-t+1) <« e X (jw) and x(-t1) <« e X (-jw)
therefore
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X1 ()= X(t+1)+ X(-t-1) < e ' Xy (-jw )+ el Xy(-j @) «F—2 X(-j @ )cos
(b) Using the time scaling property (Sec. 4.3.5), we have
x(3t) «——L—>1/3X(j @ /3)
Using the time shifting property on this, we have  x, (3(t-2)) <«———> e21” 1/3X(j @ /3)
(c) Using the differentiation in time property (Sec. 4.3.4), we have % T joX(jo)
t

Applying this property again, we have 9°X(0) « "5 _ 2% (jq)
dt?
Using the time shifting property, we have x3 —w s *X(jow) € ot
dt?

4.7 (a)Since Xy(-j @) is not conjugate symmetric ,the corresponding signal x; (t) is not real
Since Xy(-j @) is neither even nor odd ,the corresponding signal x; (t) is neither even nor odd
(b) the FT of a real and odd signal is purely imaginary and odd. therefore ,we may conclude that the FT of a

purely imaginary and odd signal is real and odd . since X,(j @ )is real and odd we may therefore conclude

that the corresponding signal x,(t) is purely imaginary and odd.

(c) Consider a signal ys (t) whose magnitude of the FT is | Y,(jw)|=A(?),and whose phase of the FT is

<{Y,(jo)}=20- Since |Y2®) | and a{Y,(jw)} =" <{Y,(~ jw)} W€ may conclude that the signal ys (t) is real
(d) Since X4(j @) is both real and even , corresponding signal x, (t) is real and even

4.8 (a)The signal x(t) is as shown in Figure S4.8. x(t) AV
1 1
We may express this signal as
t > . Figure S4.8
X®) = [yt 12 Tt o Vo

Where y (1) is the rectangular pulse shown in S4.8 Using the integration property ot 1 we have
X(t) <« X({o)=

Y(]a))+7zY(JO)O'(a)) A
Jo 19 Yt
we know from 4.2 that X(t) ]
Y(jow)= 2sin(w/ 2)
w
Therefore X(jw)= 2sinwW/2) ) | > >
w* - 1t S I R

(b) if g(t)=x(t)-(1/2) mo(w)= 2sin(w/2)
w?

4.9 (a) the signal x(t) is plotted in figure S4.9
t
x(t)= [ y(dt—u(t-1/2)

—0

using the result obtain ed in part (a) of the previous problem ,the FT X(j @ )of x(t) is
X(jw)= 2srn(w/2)+ -FT{u(t 1/2)}= sino e o
jw?

AT
(b) the even part of x(t) is given by
ev{X() }=(x(t)+x(-))/2
This is as shown in the 4.9
Therefore
sm 4]

FT{eW{x(t)}}=

Now the real part of answer to part (a) is
jo

Re{—e—}— 1 Re{j(COSa) jsin jo)}=—— sine
[

(c) the FT of the odd part of x(t) is same as j times imaginary part of the answer to part (a),we have

sino e sinw  cosm
_ 2
Ja) jo [} w
Therefore ,the desired result is
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jo'  jo
4.10 (a) we know from table 4.2 that

Siitt r_ Rectangular functiony( jo) [ see figure s4.10]
T

FT{Odd part of x(t)}= Sin@ _ cosa

Therefore
(L”t)z «FT_(1/2 7 )[ Rectangular  function y( jw )*Rectangular function y( j&)]
it

This is a triangular function 'y, (j®) as show in the figure s4.10

A A
X1 jr2 7 1 9 Yo 2| y7
-2 0 @ > | )
Y 1 0 1 2 o2
Using table 4.1 w ite Figure S4.10
t (Lnt) FT X( ja)):] dyl(Ja))
at do
this is as show in the figure above .x( ja) may be expressed mathematically as
. j127,-2<w<0
X(Jo)=]_j12z,0<w<2
0,otherwise

(b) using Pareseval’s relation

© ,,sint = 1 (=, . -
t(—)'dt= = P do~
[LeED ™ = [ o) do

27
4,11 We know that

iy ? L lng?

X(3t)<—>3X(J 3),h(iv’t)<—>3H(J 3)
Therefore,

G(jw)=Fr{x(3t)*h<st)}=§><(j§)H(jg)
Now note that

Y(jo)=FT{®)*h(t)}= X (jo)H (jw)
From this we may write

Y(JE):X(JE)H(JE)
Using this in eq.(**),we have
6(iw)=$¥(i%)

and 9() =1 y(3)

Therefore, A=1/3 and B=3.
4.12 (a) From Example 4.2 we know that

el ( FT 2 .
l+w
Using the differentiation in frequency property, we have
W ofr . d 2 dijw
te ™ j— =

dol+te® (1+a)
(b) The duality property states that if

9(t) «——G(jo)
then
G(t) «—279(jw)
Now since
el Fr, 4o
1+ %)

we may use duality to write
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_ 4jt FT
(1+1%)?
Multiplying both sides by j, we obtain
4t FT
(L+1%)?
4.13 (a)Taking the inverse Fourier transform of X(j @ ),we obtain
1 01 w1 s
x(t)_—+ —em+—¢!
2r 2rx 2z
The signal x(t) is therefore a constant summed with two complex exponentials whose fundamental frequencies
are 2 sz /5rad/sec and 2 rad/sec, These two complex exponentials are not harmonically related. That is ,the
fundamental frequencies of these complex exponentials can never be integral multiples of a common
fundamental frequency . Therefore, the signal is not periodic.
(b)Consider  the  signal  y(t)=x(t)*h(t).From the convolution  property, we know that
Y(j w)=X(j @ )H(j w).Also ,from h(t),we know that

H(jo) = i 25N @ 2sinw

This gives y(t):i+iej5t

2r 2«
Therefore, y(t) is a complex exponential summed with a constant. We know that a complex exponential is
periodic. Adding a constant to a complex exponential does not affect its periodic. Adding a constant to a
complex exponential does not affect its periodicity. Therefore, y(t) will be a signal with a fundamental
frequency of 2 7z /5.
(c) From the Fourier transform of parts (a) and (b),we see that the answer is yes.
4.14Taking the Fourier transform of both sides of the equation

FHA+ jo)X (jo)}= A2 u(t)

we obtain

_ A 1 1
XU = oario e 2570

Taking the inverse Fourier transform of the above equation
x(t) = Ae'u(t) — Ae *u(t)

Using Parseval’s relation, we have
[[I1x(o)f do=2z[ |X@F dt

Using the fact that [“IX(je)F do =27 WE have

[T Ix@Pp de=1
Substituting the previously obtained expression for x(t) in the above equation, we have
J':[Aze’z‘ + A% 2 A% M dt =1
A?/12=1

=>A= «/ﬁ
We choose A tobe A2 instead of _i2 because we know that x(t) is none negative.
4.15. since x(t) is real.

Ev{x()}= % < Re{X(jw)}

We are given that

IFT{Re {X(jw)}}=]|tle It
Therefore
EV{X(t)}: X(t) + X(_t) :| t | e7|'[|
2

We also know that x(t)=0 for t< 0 .this implies that x(-t) is zero for t>0. we may conclude that

x(®)=2/tle ™ fort>0

therefore  x(t)=2te " u(t)
4.16 (a) we may write

X(t) = Zsm(kzr/4 -k 4)

:S';‘ﬁﬂ;”&o-kn/@
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Therefore, 9(t) = 3~ z5(t—kr/4)

(b) Since g(t) is an impulse train , its Fourier transform G(jw) is also an impulse train
From Table 4.2,

. 2 & 27k
Gliw) =723 s(w-"2
(Je) ”72'/4; @ 71'/4)

-87 ) 5(w—-8K)
k=-x

We see that G(jw) is periodic with a period of 8.Using the multiplication property,
We know that
sint

X(jw)=§%{FT{;;}*G(ﬁw]

If we denote £ty by A(jw),then

7t

X (j) =1/ 22[A(jeo) *87 S 5(er—8K)]

k=-o0

~43 A(jo-8K)

=—0

X (jw) may thus be viewed as a replication of 4A(jw) every 8 rad/sec. this is obviously

Periodic.
Using Table 4.2 , we obtaig
1. wl=s1
Ajo) = {0 otherwise
Therefore, we may specify X(jw) over one period as
4, w1l
X(jw)= 0, I<jw|<4
4.17. (a) From Table 4.1 ,we know that a real and odd signal signal x(t) has a purely imaginary and odd Fourier
transform X(jw). Let us now consider the purely imaginary and odd signal jx(t) ,using linearity ,we obtain the
Fourier transform of this signal to be jX(jw) . The function jX(jw) will clearly be real and odd. Therefore, the
given statement is false.
(b) An odd Fourier transform corresponds to an odd signal, while an even Fourier transform
Corresponds to an even signal. . The convolution of an even Fourier transform with an
odd Fourier may be viewed in the time domain as a multiplication of an even and odd signal Such a
multiplication will always result in a an odd time signal .The Fourier transform of this odd signal will always
be odd ,Therefore ,the given statement is true.
4.18. Using Table 4.2, we see that the rectangular pulse x,(t) shown in Figure S4.18 has a Fourier transform

X1(jw) = sin(3w)/w. Using the convolution property of the Fourier transform,
We may write

Xa(t)= X, (£) * X, (£) <= %, (jw) = %, (jw)x, (Jw) = (52)?
The signal x,(t) is shown in Figure S4.18. Using the shifting property ,we also note that
13, (t+1) « T lel (22
And 1x,(t-1) <« sle oIty
Adding the two above equation ,we obtain
h(t) =3 x,{t+D)+1x,(t-1 <L>cos(a))(&;”“’))2
The signal h(t) is as shown in Figure S4.18 .we note that h(t) has the given Fourier transform  H(jw)

A vl ®
19 X (1) s/
1/
3 " g
6 o 6!t 7 5 0 57 t

-3 0
Mathematically h(t) may be expressed as Figure S4.18
i <1
t, 3
-o+3 14tk5
h(t)= 42
® U1 5<tl<7
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0 otherwise
4.19 we know that

H(j) = 343

X(jo)*

Since it is given that y(t) = e*?’tu(t) —e~u(t), we can compute Y (jw) to be

Y(jo)= 3+ja) 4+1jw = (3+jw)l(4+jw)
Since H(jw) = 1/(3+jw), we have
X(w)=xgjey =1/(4+ jo)
Taking the inverse Fourier transform of X(jw), we have
x(t) =eu(t)
4.20 From the answer to Problem 3.20 we know that the frequency response of the circuit is
H(w)=
Breaking this up into partlal fractions, we may write
1 _ -1

H(Jw)_ [1 ﬁj_uw +§j+jw]

Using the Fourler transform pairs provided in Table 4.2, we obtain the Fourier transform of H(jw) to be

h(t) = —-%5[- e(HEN | o4 ”t]u(t)

—wl+ Ja)+l

Simplifying ,
hi) = %e *sin(2t)u(t).
4.21.(a) The given S|gnal is

“cos(a,t)u(t) =Le e u(t) +Le e M u(t)

Therefore .
X(jw) =

1 i 1 . a+jo
20a—jap+jo) ' 2a+jm+io) T (a+jo)+a?

(b). the given signal is

_e~tsin(2t)u(t) +e” sin(2t)u(-t).

we have

v2j u2j )
Sj2+jo  3H+j2tjo  (3+jw)’+4

X, (t) = e sin(2t)u(t) «—— X, (jow) =

Also

X, () = €% Sin(2)U(-) =% (1) T X, () =X, (- jW) = 2L~ 12

3-j2-jo  3H+j2-jw

X, (jo)+ X, (jw) = -

9+(a)+2) o (w-2)

Therefore

X(jw)=

(c) Using the Fourier transform analysis equation (4.9) we have
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- T+o o(r?-0?)

X(JO)) 25|na) + sin(@) _ sin(®) _ 2z%sinw

(d) Using the Fourier transform analysis equation (4.9) we have
X(jw) =

1-qe” J”T
(e) we have
X(t) = (1/ 2 j)te?eI*u(t) — (1/ 2 j)te e~ u(t)
Therefore
SN U2) 12j
X(jo)= (2-j4+jo)?  (2+j4-jo)?
(F). We have X (1) =522 L X, (joo) = {1 |l
0 otherwise
—Zw
Also X, (t) = 22 T X, (jw) = |ol< 27
0 otherwise
X(t) = X, (1) %, (1) «——— X (joo) = 2{X,(jo) * X, (jo)}
Therefore , _
el ‘a}‘<7z
1/27)Br+w)e ', -B3r<w<—x
X(jw)= (1/2 Y43 e}, m<w<31
0 otherwise

(9) Using the Fourier transform analysis eq. (4.9) we obtain
X(jw)= %[COS Zw—SiLW’”]

if
XM= 5t-2k)
Then
X(0)=2x,(t) + %, (t 1) -
Therefore

X (jo) = X, (jo)2+e 1= 7> S(o-km)2+ (-]

Using the Fourier transform analysis eq.(4.9) we obtain
i 1 2¢710  pe7le_p
X (Ja)) - + —&? ja)2
X(t) is periodic with period 2 therefore .
X(jo) =7 X(jkz)8(aw—kz)

k=-o0

Where X(jw) is the fourier transform of one period of x(t) .that is

- 1 1_e72(1+j(u) _ 972 [1,9*2(1+im)]
X (JCC)) T 162 1+ jo 1-jo ]

0  otherwise
() x()=3e 25t —4) +1e°5(t +4)
the Fourier transform synthesis eq.(4.8) may be written as
X =% |X(jo)e’ *Pedw
From the given figure we have

X(t) _1 [sm(t 3) + cozt(t 3:)5) 1]

422.(2) ()= {e””‘ Ith3

x(t) =2 sint +2 cos(27t)

Using the Fourier transform synthesis equation (4.8) ,

€0s3t smt—sin 2t
X(t) = jnt jat?

4.23. For the given signal X, (t), we use the Fourier transform analysis eq.(4.8) to evaluate the corresponding
Fourier transform
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X, (@) = 45"

1+ jo
we know that

X, (t) = %o (1) + %o (1)

Using the linearity and time reversal properties of the Fourier transform we have

Xl(ja)) - Xo(ja)) + Xo(—ja)) — 2_29_100560—22a)e_1sina)

1+w

(ii) we know that

X, (1) = %o (t) = X, (1)

Using the linearity and time reversal properties of Fourier transform we have
. . . —20+2e sinw+ 2ae™" cos @
X,(Jo)=Xy(jo) = X,(-jw) = 2
1+ w
(iii) we know that

X3 (t) = X, (1) + X, (t +1)

Using the linearity and time shifting properties of Fourier transform we have

. . o . —20+2e ' sinw+2we™t cosw
X;(jo) =X (jo)+e' X (= jw) = 110

Civ) we know that

X3 (t) = X, (£) + X, (t+1)

Using the differentiation frequency property Xs(Jo) =] % Xo(jo)
Therefore,
1+ joe™1”

1+ jow)*

4.24 (a) (ii) For Re{X(j )} to be 0, the signal x(t) must be real or odd. Therefore , signals in figures (a) and
(c) have this property.
(i) For Im{ X(j @)} to be 0, the signal x(t) must be real or even. Therefore , signals in figures (e)
and (f) have this property.
(iii)For these exist areal « suchthat e '*“X (jw) isreal we require that x(t+ a ) be a real and

X, (Jo)=

even signal. Therefore , signals in figures(a), (b), (c), (d),and (f) have this
property.
(iv) For the condition to be true ,x(0)=0,.Therefore ,signals in figures
(a), (b), (c), (d),and (f)have this property.
(v) For the condition to be true the derivative of x(t) has to be zero at t=0 . Therefore ,
signals in figures (b), (c), (e),and (f)have this property.
(vi) For this to be true, the signals x(t) has to be periodic.Only the signals in figures
(a) has this property.
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(b)For signal to satisfy only properties (i), (iv),and (v), it must be real and odd , and
x(t)=0 , x'(0)=0

the signal shown below is example of that

p X

1 Fiaure 4.24

-2 -1 t

4.25 (a) Note that y(t)=x(t+1) is a real and even signal. Therefore ,Y (jw) is also real and even .this implies

that <Y (jw)=0.Also since Y (jw) =e' X (jw) we know that <Y(jow) =-w
(b) we have

X(j0)=[" x@®dt=7
(c)we have

j“; x(jw)de = 22x(0) = 4r TX(}

(d) Let Y(jo) 2sinw ., . The corresponding signal y(t) is
[0

—3<t<— ‘
y(t)={ 0, otherwize -

/2
Then the given integral is
[ X (i)Y (jo)do = 27{x(t)* y(t)}o = 77 ]
(e) we have
[ X(jo) do= 2;zj:\x(t)\2dt =267

(f)The inverse Fourier transform of Re{X (jw)}is the &AX(t)}which is [x(t)+x(-t)]/2.this is as shown is
the figure below.
426 (a) (i) We have

. . . 1 1 1/4 1/4
Y(jo) = X (jo)H (jo) = - ][] = WD)
2+ jo) A+ jo A+ jo 2+ jo)
Taking the inverse Fourier transform we obtain
_1 -4t _l -2t 1 -2t
y(t)—4e u(t) 4e u(t)+2te u(t)

(ii) We have
L S 1 . -4 @We @y W
Yley=XGeHte) =l o G ™ 24 0 T @+ o) T4t e @+ joy
Taking the inverse Fourier transform we obtain
1 2 - 1 -
t)==eut)+=te“u(t)+=e Mu(t) + =te Mu(t
y()4 ()4 ()4 ()4 (t)
(iii) We have
. ) . 1 1 12 12
Y(JaJ)—X(Jw)H(Jw)—[1+jw][l_jw]—1+jw+l_jw
Taking the inverse Fourier transform we obtain
ORET

(b) By direct convolution of x(t) with h(t) we obtain
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0,t<1
yt)=< 1-e P 1<t<5
e eV t>5
Taking the Fourier transform of y(t),
267 sin(2w) e e 1”2sin(2w)
o+ jw) 1+ jo
4.27 (a) The Fourier transform X( ja) is

Y(jo)=

=X(jo)H(jo)

: % i 2 . 3 sin(w/ 2 i~y i
X(jo) = 'f x(t)e ' “dt =j1 e gt —L e 1dt :2¥{1— e Yo %"
% w»
(b) The Fourier series coefficients ay are
1 2 -i%u 3 1% sin(kz/2) ey i3k
=], xe =§{jle Tdt-[e T dip === —{l-e N je "
Comparlng the answer to parts (a) and (b) ,it is clear that
a, = X2
T T
Where T=2.
4.28
(a) Form Table 4.2 we know that
b1 e T p(jw) =273 a, 5 —kay)
Frorrithis )
Y(jo) —f{X(Jw)*H(Jw)} ZakX(J(w keoy ))
(b)The spectra are sketched in Flgure S4.28
4.29 (i) We have
X, (j@) =|X (j)e!* 0 = X (jo)e =
From the shifting property we know that
X, (t) = x(t—a)
(i) We have
Xb (Ja)) — ‘x (ja))‘ejqx(jzu)-i—jbw — x (ja))e—jbw
From the shifting property we know that
X, (t) = x(t+b)
(iii)  We have
X (jo) =[X(jo)e' I = X" (jo)
From the conjugation property we know that
X (t) = x"(-t)
Since x(t) isreal, X, (t) = x(-t)
. A
0 4 (i) 11
- N - | | .
o 0 ®
a2 1z |1 2 1 1 2

=T+
'_\
¥
\/
G
[N
>B

3 2 - 1 ® N 1[0 L NG
(vi) )
1/2 A
AVAVAVAVA R
L1 | | L1, N
-3 -2 -1 0 o 72 0 a
(vi) 172 12




Figure s4.28
(iv) We have

Xq(jo) =|X (jo)e! 11 = X7 (jo)e™

From the conjugation , time reversal and time shifting properties we know that
X, (t) =X (-t —d)
Since x(t) isreal , X, (t) = x(-t—d)
4.30 (a) We have that

W(t) = cost «——W (jo) = #[(w—1) + 5(w+1)]

And

g(t) = x(t) cost «——G(j) 2%[X(ja))*W(jw)]

Therefore,

G(jo) =2 X ((@-1+Z X (i(w+D)

Since G(jw) is as shown in Figure s4.30 , it is clear from the above equation that

shown in the Figure s4.30.

2 4 a(jo) A X(jow)

0] 100

Sy

0 5

Figure s4.30
(b) X,(jw) isasshown in the Figure s4.30
4.31 (a) We have
X(t) = cost «——— X (jo) = 2[5 (@ +1) + 5(w—-1)]
(i) We have

h (t) =u(t) «—"—H,(jo) =jl+7r5(a))
1)

-2

Therefore,
Y(jo)=X(jo)H,(jo) = %[5(w+1) —6(w-1)]

Taking the inverse Fourier transform ,we obtain

y(t) =sin(t)
(il)We have
h, (t) = -25(t) + 5 *u(t) «——H, (jo) = -2+ 5_
2+ jo

Therefore,
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Y(jo)=X(jo)H,(jo) =%[5(W+1)—5(w—1)]

Taking the inverse Fourier transform ,we obtain
y(t) =sin(t)

(iii)we have

2

ha(t)=2te " u(t)«>Ha(jo )= < .
1+ jo)?

Therefore,
Y(j@)=X(j @ )H1( a’)=%[5(ja)+l)—5(ja)—l)]-

Taking the inverse Fourier transform ,we obtain

y(t)=sin(t).
(b)An LTI system with impulse response

h4(t):% [ha(t)+h2(0)]

will have the same response to x(t) =cos(t),we can find other such impulse responses by suitably scaling and
linearly combining hi(t),h2(t),and ha(t).
4.32 Note that h(t)=h(t-1); where
ha(y)=sin4t
t
The Fourier transform H1(jw) of h1(t) is as shown in figure s4.32.

From the above figure it is clear that h1(t) is the impulse response of an ideal lowpass filter whose passband
is in the rage |w|<4.therefore, h(t) is the impulse response of an ideal lowpass filter shifted by one to the
right .using the shift property,

H(j @ ):{e‘,| wl 4
0, otherwise

(&) we have

X1(j @ ):ne%&(a) -6t ﬂejﬁé(a) +6)
It is clear that
Yi(jow)=X1(jw) H(j @ )=0= y1(t)=0
this result is equivalent to saying that x1(jw) is zero in the passband of H(jw).
(b) We have

Xa(j w):%[i(%)k{é'(a)—Bk) 5w+ 30},
Therefore, 7
Ya(j @)= Xa(j @) H(j a))=’;[i(;){5(w—3) _S(@+3) ).
k=0

this implies that
y2(t)="/, sin(3t-1).
we may have obtained the same result by noting that only the sinusoid with frequency 3 in x2(jw) lies in the
passband of H(jw).
(c) We have
Xo(jw ):{ei‘w o4
0, otherwise
Y3(jw)=Xs(jo) Hjw)=Xs(jw)e
this implies that
y3(t)= xa(t-1)= Sin(4)
at

we may have obtained the same result by noting that x2(jw) lies entirely in the
(d) x4(jw) is as shown figure s4.32.

Z(G® )

A .
H (O )

Figure S4.32

-4 0 4 o -4 0 4@
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Therefore,
Ya(jo)=Xs(jo)H(jw)=Xs(jw)e
This implies that
Y4(t)= xa(t-1)= (sin@(-1),,.
z(t-1)
We may have obtained the same result by noting that x4(jw) lies entirely in the passband of H(jw) .
4.33 (a)Taking the Fourier transform of both sides of the given differential equation .we obtain
Hi®)=v(w)= 2
X(jo) -0*+2jo+8
Using partial fraction expansion, we obtain
Hijo)= 2 1
jo +2 jo+4
Taking the inverse Fourier transform
h(t) =eu(t) —e™u(t)
(b) for the given signal x(t) ,we have
X(jo)=

2+ jo)
Therefore,

2 1
(~0° +2jo+8) 2+ jo)’

Y(jw) = X (jo)H (jw) =

Using partial fraction expansion, we obtain
1/4 1/2 1 1/4
Y (jw) = PR T
jo+2 (Ja)+2) (jo+2) jo+4b
Taking the inverse Fourier transform

h(t) = e‘Ztu(t) e‘”u(t)+t e ?u(t) - e““u(t)

(c) Taking the Fourier transform of both S|des of the given dlfferentlal equation ,we obtain
Y(jo) 2(-0° -1)

X(jo) -0 +2jo+1

Using partial fraction expansion ,we obtain

—~2-22)  2+22]

ez W V202
2 2

H(jo)=

H(jo) =2+

joo
Taking the inverse Fourier transform
h(t)=25(t)-v2(1+2 j)e * I V2y(t) 21— 2 et Dy ).
4.34.(a)We have
Y(jo) _ jo+4
X(jo) 6-0’+5jo
Cross-multiplying and taking the inverse Fourier transform, we obtain

LRIONEL IO dx(t)+4x(t)
dt dt dt

(b)we have
1

H(jo) = TR
+jo 3+ jo
Taking the inverse Fourier transform we obtain,
h(t) = 2e *u(t) —e *'u(t).

(c) we have
t 1
4+ jo  (4+ jo)?

X(jo)=

Therefore,
1
(4+ jo)(2+ jo)
Finding the partial fraction expansion of Y(j w) and taking the inverse Fourier transform.

h(t) = e’z‘u(t) e"“u(t)

Y (iw) = X (jo)H (jw) =

4.35 (a)from the given mformatlon
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Jai+w?

a’+o’

IH( @)= =1

Also.

OH(jw)=-tan* 2 —tan* ¥ = 2tan*2
[24 [24 [24

Also.

H(jo)=-1+ 2a = h(t) = —5(‘:) + 2ae_au(t)
a+jo

(b)if a=1,we have
[H(jw)=1. OH(jo)=-2tan"
Therefore,

y(t) = cos(% — f) —cos(t —%) —cos(\/3t— 2?”),

4.36. (a)the frequency response is
Hijoy=YU®) __ 3G+ie)
X(jo) (4+jw)2+ jw)
(b)finding the partial fraction expansion of answer in par (a) and taking its inverse
Fourier Transform, we obtain

h(t) = g[e*“ e ().

(c) we have
Y(jo) (9+3jw)
X(jo) 8+6jo—a’
Cross-multiplying and taking the inverse Fourier transform. we obtain

d?y(t) | . dy(t) _ o 0x(®)
i +6 ot +8y(t)=3 it +9x(t).
4.37.(a)Note that

X(O=x1(t) x1(t)
where

%0 = 1, ‘w‘<§
0, otherwise
Also, the Fourier transform *:(i®) of x1(t) is
X, (jo) = 2sin(a)/Z)
[}

Using the convolution property we have
X (jo)= Xl(jw)xl(jw):[,zMT

[

(b) The signal %) is shown in Figure S4.37

1

o t
1
/\ /\
6 -5 4 3 2 -1 0 1 2 3
5 -4 3 -2 1 2 3 4 5 t

Figure S4.37

-1 0

(c)Note that
X (jo) = X(ja))% > 5(j(w—k§)):e(jw)§ > 6(J(w—k§»

This may also be written as
X(jo)=7 3 X(inkI23(i(@-k ) =7 3. 6(jnk/2)(i(@-k D)
k=—00 k=—00

Clearly, this is possible only if
G(jrk/2) =X (jrk/2)

4.38.(a)Apply a frequency shift to the analysis equation ,we have
(b) We have

o(t) =e" «ZE5W (jo) = 225 (0 —w,)
Also
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KOO T [X(j0) "W (jo)]
=X (jo)*8(@-o,)

=X(i(@—a,))
4.39. (a) From the Fourier analyses equation. We have

H — *© — jot — * B — jot
G(jw)=[" g®e dt=[" X (jt)e *"dt (54.30.1)
Also from the Fourier transform equation, we have

1oy,
t — = X jot
X(t) zﬁLo (jo)e" dw
Switching the variables t and @, we have
1 = o
X(w)==—| X(jt)e'"dt
(@) =] X(iv
We may also write this equation as
2mx(-w) =~ X(jt)e dt

Substituting this equation in eq. (S4.39-1), we obtain
G(jw) =27x(-w)

(b) If in part (a) we have X(t) =o(t+ B), then we would have 9 =X(it)=
G(jw) =27x(—w) = 276 (—w + B) = 275 (ew — B)

4.40. When n=1, x®=e7U®) 454 X(jo)=1/(a+ jo)
When n=2, X, (t) =€ "u(t) and X, (jo) =1(a+ jow)’
Now, let us assume that the given statement is true when n=m, that is,

jBt
€ and

—at

t"Pl —at, FS R _ 1
X, (t) = (mfl)!e u(t) «—— X, (jw) = @ jo)
For n=m+1 we may use the differentiation in frequency property to write,
t Fs . 1 .dX, (jw) 1
t) =—x, () <> X =—jLm =
Xm+1( ) m Xm( ) m+1(Ja)) J da) (l+ ja))mﬂ

This shows that if we assume that the given statement is true for n=m, then it is true for n=m+1 .Since we also
shown that the given statement is true for n=2, we may argue that it is true for n=2+1=3, n=3+1=4, and so on.
Therefore, the given statement is true for any n.

4.41. (a) We have

90— |- [X (i)Y (jo)]e"do

L i“z X(je)v(j(w—e))da}ei“‘dw

- 27 9= 21
1 *© H 1 *© H joot
:gh X(19)|:§I%Y(j(a)76’))e dw}d@
(b) Using the frequency shift property if the Fourier transform we have
7Y (i(0-0)e™dw - y(t)
27 I
(c) Combining the results of parts (a) and (b)
90~ | " X(i0)e"y()d0

- R i0)e it
=y [ X(j0)e""do
= y(O)x(t)
4.42. x(t) is periodic signal with Fourier series coefficients ak. The fundamental frequency of x(t) is

®f 2100 rad/sec. From Section 4.2 we know that the Fourier transform X (i@) of X(t) is
X(jo) =3 278,5(e~100k)
k=—x

(a) Since
¥ (£) = X(t) cos(@yt) Y, (j) :%{X (i(@-ap))+ X (j(@+ap))}
We have
Y(jo) =7 Y [8,6(0—100k — ;) +2,5(0~100k +,)]

[ —
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=73 [a,8(@+100K - y) + 8,5 —100K +a,)]
e (S4.42-1)

If @o =500. then the term in the above summation with k=5 becomes
7a 0 () + a6 (w)

Since x(t) isreal, a, = a*_k .Therefore, the above expression becomes 27z€Re{a5}5(a;),

Which is an impulse at @ = O Note that the inverse F0L_1rier transform of 2nRefa}o ()
is g, (t)=Im{a,} . Therefore ,we now need to find a H(i®) such that

Y.(Jo)H (jo) =G,(jo) = 22Re{as} 5(w)

We may easily obtain such a H(jo) by noting that the other terms (other than that for k=5) in the summation
of eq.(S4.42-1) result in impulses at @ =100m, m = 0 .Therefore, we may choose any H(i®) which is zero

for w=100m, where M=+L%2
Similarly since
yz(t>=X(t>sin(wot)<L>vz(jw)=2ij{x<j(w_wo>)—x(j(wmo))}

we have

k=-o0

Y, (jw) =% i [8,5 (100K — 9, ) — 8,8 (@ —100K + @,)]

=% 3" [a (@ +100k — ;) — 8,5 (100K +@,)] (S4.42-2)

k=—0

If @o =500, then the term in the above summation with k=5 becomes
%a,sﬁ(w)ljaﬁé(w)
Since x(t) is real, 27 ,Therefore, the above expression becomes Z”Re{as}g(w),
Which is an impulse at @ = 0. Note that the inverse Fourier transform of 27e{as}d(@)
9, =Im{a,| .Therefore ,we now need to find a H(i®) such that
Y,(jo)H (jw) =G, (jw) = 22Re{a;} 5(v)

Is

(b) An example of a valid H(jo) which be the frequency response of an ideal lowpass filter
with passband gain of unity and cutoff frequency of 50 rad/sec. In this case,

h(t) :@
4.43. Since
Y, (t) = cos’ t _Lrcos2)
we obtain
Y, (jw) :ﬂﬁ(w)+%6(w—2)+%§(a)+2)
Therefore,
Yo (t) = X(©) Y, (t) = X(t) cos? (1) « =Y, (jo) = i{x (Jjo) =Y, (jw)}
This gives

V(o) = 2 X () + 5 X (((@-2) + 3 X (i(0+2)

X(i®) and Y(®) are as shown in Figure S4.43.

X(jo) G(jw)

S
) 4
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X, (jo)
AJ2
A4 A4
3 2 1 0 1 2 3 W
Figure S4.43
Now,
sint . 1 \a)\<1
) =—-c—>Y.(jo) =
%= 7t (1) {0, otherwise
Also,

9(t) = Y, (1) * Y5 () <G (jw) =Y, (jo)Y; (j)
From Figure S.4.43 it is clear that
G(jo) =2 X (jo)

1
h(t)==5(t
Therefore, an LTI system with impulse response ©=30 may be used to obtain 9® from *®

4.44. (a) Taking the Fourier transform of both sides of the given differential equation, we have
Y (jo)[10+ jo]= X (jo)[Z(jo)-1]

Z(j0)=——+3
Since, 1+Jjo  we obtain from the above equation
H(jo) -1 1210
(jo)  (A+ jo)10+ jo)

(b) Finding the partial fraction expansion of H(jw) and then taking its inverse Fourier
Transform we obtain

1 17 o
h(t):ge u(t)+§e u(t)
4.45. We have
y(t) =x(t) *h(t) =Y (jo)H (jw)
From Parseval’s relation the total energy in y(t) is

w© 2 1 ¢ o2
E=[" vl dt=—[" ¥ (jo) do

1 ¢ 2
=5L|X(Jw)l H(jo) do
1 o2 G 1 p-e+1i2, . 2
ZZLM 12 |X(ja))| d“’+ZL:D 12 |X(ja))| do

E=%\X(jrou)\2 \
For real x(t), ¥Ciaf =X(e)’ Therefore,
1
E=—‘X(ja)0)‘
T
4.46. Let %O pe the response of T1(J@) g xcoswt | o 82() e the response of

H.(jo) 1o xMsinat Then with reference to Figure 4.30,
y(t) = x(t)e’* = x(t) cosw.t + X(t)sin w.t

and
o(t) =9, + jg, (1)
Also,
f (t) =e ! o(t) =[cos wt— jsinawt][g,(t) + jg,(t)]
Therefore,

Re{ f (1)} = g,(t) cos vt + g, (t)sinwt
This is exactly what Figure P4.46 implements.
4.47. (a)We have
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he(t) — h(t) +2h(_t) .

Since h(t) is causal, the non-zero portions of h(t) and h(-t) overlap only at t=0.Therefore,

0,t<0
h(t) =4 he(t), t=0 (s4.47-1)

2he(t), t > 0
Also, from Table 4.1 we have
he(t) <7 —>Re{H (jw)}.
Given Re{H(jw)},we can obtain he(t) .From he(t) ,we can recover h(t) (and consequently
H (jw)) by using eq.(s4.47-1).
Therefore, H(jw) is completely specified by Re{ H (jw) }.
(b)If
Re{H (jw)} = cost = Lem  Lo-m
W3 =8t =7 2
then,
1 1
h(t) =6t +2) + 5t 1)
Therefore from eq.(s.4.47-1),
h(t) =o(t -1).

(c)We have

mmzhm2m4x

Since h(t) is causal, the non-zero portions of h(t) and h(-t) overlap only at t=0 and ho(t) will be zero

at t=0, Therefore,
0,t<0

h(t) =<unknow,t =0°
2ho(t),t > 0
Also, from Table4.1 we have
ho(t) <> Im{H ( jw)}
Given Im{H (jw)} we can obtain ho(t) .From ho(t) ,we can recover h(t) except for t=0 by using
eq.(s4.47-1).1f there
Are no singularities in h(t)at t=0,then H(jw) can be recovered from h(t) even if h(0)is
unknown. Therefore H (jw)
Is completely specified by IM{ H ( jw) } in this case.
4.48. (a)Using the multiplication property we have

h(t) = h(t)u(t) «<F—> H (jw) :i{H ( jw)*[jiwma(w)]}.

(s4.47-2)

The right-hand side may be written as
M) = 5 H )+ [H () * 11
7 w
That is,

H(w) - = [ HUDg,
o W—n

Breaking up H(jw) into real and imaginary parts,

Hr Hi Hi Hr
He(jw) + jHi(jw) = 7]‘ W 7,'[ W‘j

Comparing real and |mag|nary parts on both sides, we obtain

Hr(jw) = I (W) and Hu(jw):%fwiHv;(_jz)dn'

(b)From eq.(P4.48-3),we may erte
y() = x(t)*% = Y(jw) = X(W)FT{Y/(a)}.
Also, from Table 4.2

(S.4.48-1)
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u(t) «—— i + 5 (W).
jw

Therefore,

2u(t)~ 1521
w

Using the duality property, we have

%(L) 2z[2u(-w) —1].

or

%@ [2u(-w) -1].

Therefore, from eq.(S4.48-1),we have
Y (jw) = X(jwW)H (jw).

where

. . -j,w>0,
H(jw) = J[ZU(—W)—1]={ i
j,w<0

(c)Let y(t) be the Hilbert transform of x(t)=cos(3t).Then,
Y (jw) = X(jW)H (jw) = #[o(w—=3) + o (W+ ) H (jw) =— jo (W —3) + jzo (w+3).
Therefore,
y(t)=sin(3t).
4.49.(a) (i)Since H(jw) is real and even, h(t) is also real and even.
Diney [ Hcimteran <= [ 11 (e e
Since H(jw) is real and positive,
1 i Wt
[h(t) |< o j H (jw)e ™ dw = h(0).
Therefore,
max[|h(t)[]=h[0].
(b) The bandwidth of this system is 2w.

(c)We have
BwH (jO) = Area under H(jw).

Therefore,

1 w
Bu=——1| H(jw)dw.
H(jo) *-~
(d)We have
s [Lhod WGy g
S hO B

1w T 1.
" H(wydw  —[" H(jw)d
Zﬂj,m (jw)dw 2,,L (jw)dw
(e)Therefore,
2
Bwtr:BwlZZH.

w

4.50.(a)We know from problems 1.45 and 2.67 that
Po(t) = ().
Therefore,
Dy (jW) = Dye(— jw).
Since @x(t) is real,
Doy (jw) =D ye( jw).
(b)We may write
go() = [ x(t+7)y(e)dr = X(1)* Y(-0).
Therefore,
Dy (jW) = X({W)Y (= jw).
Since y(t) is real, we may write this as
Dy (jw) = X(GW)Y" (jw).
(c)Using the results of part(b) with y(t)=x(t),
D jw) = XWX (jw) = X (jw) [*> 0.
(d)From part(b) we have
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Dy ( jw) = X({w)Y" (jw)
= X({W)[HEW)XGwW)T
= O (jW)H " (jw).
Also,
Dy (jw) = Y(GW)Y " (jw)
=[HGW)XGWIH W)X Gw)]
= Ou(jw) [ H (jwW)[* .
(e)From the given information, we have
ew_1 e

X(jw) =—
W w
and
. 1
H(jw) = ——.
a+ jw
Therefore,
. . 2—-2cosw 2sinw 1
D jw) = X (jW) [ = ot
W W W
. . ., . 2—-2cosw 2sinw 1 1
Do) = D) o) =| 2200 +][ }
w w w” | a—jw
and

W2

mw(jw>=cbxx(jw)|H(jw)|2=[2‘2‘i°sw—25"lw 1}[ = }
w W a +w

(f) We require that
., w?+100
[H(w) "= TS
The possible causal and stable choices for H(jw) are
H, (jw) = 1+ J-W and 10—_le
5+ jw 5+ jw
The corresponding impulse responses are
h (t) = 5(t) +5e 'u(t) and h,(t) = —-s5(t) +15e Su(t).
Only the system whit impulse response h, (t) has a causal and stable inverse.
4.51.(a)H(jw)=1/G(jw).
(b)(i)If we denote the output by y(t),then we have
Y (j0) = %
Since H(j0)=0,it impossible for us to have Y(jO)=X(jO)H(j0).Therefore, we cannot find an x(t) which
produces an output which looks like Figure P4.50.

(ii) This system is not invertible because 1/H(jw) is not defined for all w.
(c)We have

H, (jw) =

1

SN N KT kT
H(w) =X e e ™ = e

We now need to find a G(jw) such that
H@Gw)G(jw)=1.

Thus G(jw) is the inverse system of H(jw), and is given by
G(jw) =1—e @7,

(d)Since H(jw)=2+jw,
o(jw -0 L
(jw) 2+ jw
Cross-multiplying and taking the inverse Fourier transform, we obtain

dy(t) _
4 +2y(t) = x(t).

(e)We have
W +3jw+2
—W2+6jw+9’
Therefore, the frequency response of the inverse is
1 —w’+6jw+9
H(jw) -w?+3jw+2’
The differential equation describing the inverse system is

H(jw) =

G(jw) =
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9O L 3O 5y - IO GO g
dt dt dt dt
Using partial fraction expansion followed by application of the inverse Fourier transform. We find the
impulse responses to be

h(t) = 5(t) —3eu(t) + 2te *'u(t)

and
g(t) = 5(t) —e 2u(t) + 4eu(t).
4.52.(a)Since the step response is s(t) = (L—e"'?)u(t) ,the impulse response has to be

h(t) = %e’”zu(t).

The frequency response of the system is
. 1/2
H(jw) =

T —.

2

We now desire to build an inverse for the above system. Therefore, the frequency response of the
inverse system has to be
: 1 1.
G(jw) = R = Z[E+ jw:|.
Taking the inverse Fourier transform we obtain
g(t) = o(t) +2u,(t).
(b)When sin(wt) passes through the inverse system, the output will be
t(t) =sin(wt) + 2wcos(wt).
We see that the output is directly proportional to w. Therefore, as w increases, the contribution to the
output due to the noise also increases.
(c)In this case we require that | H(jw) <! when w=6.Since

. 1
[H(jw) [’< ——,
a” +w

we require that
1 1
<.
a?+36 16
Therefore

1 a<i

<
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Chapter 5 Answers

5.1 (a) let x[n]= (@/2)"*u[n-1].Using the Fourier transform analysis equation (5.9).the Fourier transform
X (eM) of this signal is
X(eM) = i x[nle ™

N=-w0

(W/2)" e

? 1

n=;

(1/ 2)n e—jw(n+1)

BV

n=0
=e —iw 1

1-@/2)e )
(b) Let x[n]=(1/2)"*.Using the Fourier transform analysis equation (5.9).The Fourier transform X(ejw) of

signal is

K™= Y xnfe " Z (1/2) " Deri +Z(1/2) B

N=—w0 N=-—o0
The second summation in the right—hand side of the above equatlon is exactly the same as result of part
(a).Now ,

0 _ 0 _ 1
1/2 —(n-1) e—an 1/2 n+1ejwn _
2.2 -2 W2 iy 2em

Therefore

: 0.75e ¥
x(e L w1
( ) "1/ 2)e™) * e’ 1-(1/2)e ™)~ (1.25—-cosw)

nou XN =0[n-1]+o[n+1]

transform analysis equation (5.9).the Fourier transform x(ejW) of this signal is

. Using the Fourier

0

x(e™)=> x[ne ™

N=—w0

—jw Jw
e, e’ _2cosw
(b) Letx[n]=6[n+2]+5[n—2] -using the Fourier transform analysis equation (5.9). the Fourier transform y(eiv

of this signal is
x(eM) = i x[nle ™

=e’.e?"=2jsin(2w)
5.3 We note from section 5.2 that a periodic signal with Fourier series representation

X[n]: Z a ejk(Zzz/N)n
k
k=<N>
has a Fourier transform

X (e’W) = i Zﬁakg(w_@)
K=—0
(@) Consider the signal y [n] =sin(Zn+Z) -We note that the fundamental period of the signal x,[n] is N=6.
3 4

The signal may be written as
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LT T
Tl T

i(FneE _ 27 2z
x,[n]= i_e](3n+4) - L= Loige L

2j 2j 2j 2j
Form this , we obtain the non-zero  Fourier series coefficients a, of X,[n] the range
—2<7<3 as
a =(1/2j)e’* a,=-(1/2j)e *

Therefore , in the range —7 < W< ,we obtain
X (€M) = 27ra,5(W— %”) L 2ra S(w+ %”)

=(zl j{e"™"*s(w—2716)—e " *5(W+27/6)}
(b) consider the signal , ryj_ 5. cos(“nZ%)-We note that the fundamental period of the signal x,[n] is
’ 6 8

N=12.the signal maybe written as

x[n]=2+(/2)e s ® y@r2)e "

2 T 2 T

=2+(1/2)e'2e's +(1/2)e 2'e ¢
Form this ,we obtain the non-zero Fourier series coefficients a, of X,[n] intherange -5<k <6 as
a,=2 a =(/2)e’ a,-@W2e

Therefore ,in the range ,we obtain

X (M) =2ra,o(w) + 27ra15(w—i—72r) +27a,6(W+ i—;[)

= 4z3(w) + 2fe!"S(w-T) +e oW+ )}
5.4 (a)Using the Fourier transform synthesis equation (5.8)
x[nl=(/27)[" X,(e™)e"dw
= Zﬂ)J:” [2725(W) + 28(W— 721 2) + 75 (W+ 7 | 2)]e ™ dw

=el%+(1/2)e)"P" 4 (1/ 2)e 12"
=1+cos(zn/2)
(b)Using the transform synthesis equation (5.8)

x,[n] = (1/ 27) j X, (e™)eM dw

=—(/27)[ 2jedw+ (1/27) ["2je™ dw

_aim jan _
(it
n n
=—(4/(nx))sin*(nz/ 2)
5.5 From the given information

x[n] = (L/ 27) j x(e™)e ™ dw

=@ 27)[" | X (e™)e ™ Ve hdw

zl4 —gw .
=(1/2”)I, e 2 e"dw

sin(%(n—S/Z))
ST a-3/2)

The signal x[n]is zero when = is a nonzero integer multiple of 7z or when |n|— oo .the value of
4

(n-3/2)

T (n 3z C@NMEVEr be such that it is a nonzero integer multiple of 7 .Therefore .x[n]=0 only for n=*oc0
4

5.6 Throughout this problem, we assume that
X[n] (L) Xl(ejw)
(a) Using the time reversal property (Sec.5.3.6),we have
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x[-n] «=— X (&)
Using the time shift property (Sec.5.3.3) on this .we have
x[-n+1] « T e ™ x (e™) and  x[-n-1] <« eM x (&)
Therefore
x[n] = X[-n+1] + X[-N-1] < e X (e )+ e X ()
T ox (&™) cosw
(b) Using the time reversal property (Sec.5.3.6) ,we have
X[-n] <« X ™)
Using the same conjugation property on this ,we have
X [-n] < X" (e ™)
Therefore
X, [N]=(1/2)(X" [-n]+X[n]) «——(1/2) X (e™)+ X" (e™)
<« Re{X (e")}

(c) Using the differentiation frequency property (Sec.5.3.8),we have

ax[n] < j X E")

dw

Using the same property second time ,
d?X (e™)

n’x[n]«——— -
dw

Therefore

FT _dzx(eJW)_
dw?

5.7 (a) Consider the signal y,[n]  with Fourier transform

Y, (e™) :isin(kw)

x[n]= n*x[n] - 2nx[n] +1

2 jw .
2] LXED) ey
dw

We see that Yl(ejw) is real and odd .From Table 5.1 , we know that the Fourier transform of a real and odd
signal is purely imaginary and odd. Therefore ,we may say that the Fourier transform of a purely imaginary
and odd signal is real and odd. Using this observation, we conclude that y,[n] is purely imaginary and odd
Note now that
X, (™) =e"Y,(e™)
Therefore, X [n] = y,[n—1] .therefore , is also purely imaginary .but x,[n] is neither even nor odd
(b)We note that x_eiyis purely imaginary and odd. Therefore, x ] has to be real and odd.
(d) ©Consider a signal y,[n]whose magnitude of the Fourier transform is |y,(e™)|= A(w) and whose phase
of the Fourier transform is <{v,(e™)}=—(3/2)w .since|Y,(e™)|HY,(e )| and ,we may conclude that the

signal y,[n]is real (see Table 5.1,property5.3.4).

Now, consider the signal X;[n] with Fourier transform x_(e™)=Y,(e™)e’” =Y,(jw).Using the result from
previous paragraph and the linearity property of the Fourier transform .we may conclude that has to
real .since the Fourier transform ,we may conclude that has to real . since the Fourier transform X3(ejw) is
neither purely imaginary nor purely real .the signal X,[n] is neither even nor odd

5.8 Consider the signal

1, <1
Xl[n] ={0, IELI
From the table 5.2, we know that

i in(3w/2)
n FT X eJW — Sln(

K= X = Gwi2)
Using the accumulation property (Table 5.1, Property 5.3.5),we have
3 &[k]@l%jw X, (&™) +7X,(e") Y S(w—27k)
k=—0 —€ k=—0

Therefore , intherange — 7 <wW<rx1
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zn: xl[k]éﬁ X, (€™)+375(w)
“~ _

Also, intherange — 7z <wW<r,
1< 275(w)
Therefore , intherange — 7 <W<rx ,

x[n]=1+>" ><1[k]<L>l — X, (™) +575(w)
k=— —€
The signal x[n] has the desired Fourier transform .We may express X[n] mathematically as
n 1 n<-2
nl=1+ Y x[k1%) n+3 en<l
o 4 n>2

5.9 From property 5.3.4 in Table 5.1 , we know that for a real signal x[n],
Od{x[n]}«—— jIm{X,(e")}
From the given information
jImX, (e™) = jsinw— jsin2w

=(1/2)(e" —e ™ —e? 1)
Therefore,
Od{x[n]}= IFT{j Im X, (e")}= 1/ 2)(S[n+1] - S[n-1] - S[n+2] +5[n-2])
We also know that
Od{x[n]} = X[n]-x[-n]

2

And that x[n]=0 for n>0. therefore

X[n] = 20d{x[n]} = o[n+1]-5[n+2] for n<0

Now we only have to find x[0] .Using Parseval’s relation ,we have
1 (= iy 2 z

L IXE™ dw= 3 [N P

Form the given information, we can write
3= Q) + 3 XN = (d)* +2

This gives x[0]=1.but since we are given that x[0]>0.we conclude that x[0]=1
Therefore

X[n] =do[n]+d[n+1]—o[n+2]
5.10 From table 5.2 we know that

Cyuln] s —
2 1-—e
2
Using property 5.3.8 in table 5.1,
1 —jw
1., . d 1 5¢
X[n] = ()" ulnl "> X (") = - —{—F—}=—24—
2 dw 1—Tg v (1_767]W)2
2 2

Therefore , - i”(%)" =3 X[ =X () = 2
n=0 -0
5.11 We know from the time expansion property (Table 5.1, Property 5.3.7) that
glnl = x [NI«"—>G(e'") = X (e"*")
Therefore, G(e!) is obtained by compressing X (e!”) by a factor of 2. Since we know that X (e!”) is
periodic with a periodic of 27, we my conclude that G(e!”) has a periodic which is (1/2) 2z = = . Therefore,
G(Ee)=GE"*™) and a=x.
5.12 Consider the signal

sin%n
x[n] = -

For Table 5.2, we obtain the Fourier transform of x;[n] to be
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{1, 0wl<zl4
xl(eJ ):
0, 7lddowlzr
The plot of X, (e/”) is as shown in Figure S5.12. Now consider the signal x;[n]=( x;[n])%. Using the
multiplication property (Table 5.1, Property 5.5), we obtain the Fourier transform of x,[n] to be
X,(8') = (L1 27)[X, () * X, ()]
This is plotted in Figure S5.12.
From Figure S5.12. It is clear that X,(e'”) is zero for »> /2. By using the convolution property
(Table 5.1, Property 5.4), we know that

Y(ejw) = Xl(eJ‘U)FT{LnSann} | A FT{ S:'nT%;n\!},
NG 4 E )
| |

|
I ] > do
o I w -7 . o w e © We,
N 2 Figure §5.12
The plot of [Sin 0 n] is shown in Figure S5.12. It is clear that of then z/2<w<r.
e[ sine.
m
5.13 When two LTI systems connected in parallel, the impulse response of the overall system is the sum of
the impulse response of the individual. Therefore,
h[n]= ha[n]+ h[n]
using the linearity property (Table 5.1, Property 5.3.2)

H(e') = Hy(e?“) + Ho{e?)
Given that hy[n]=(1/2)"u[n], we obtain
1

BEIEE) = Ji'?‘]—‘
Therefore, . .
D 12+ 00 3 1 i =2

Hylefl = 19 — Temivifie=2w 18] — %6"1“ T %e'l-
Taking the inverse Fourier transform, h,[n]=-2(1/4)"u[n].

5.14 From the given information, we have the Fourier transformG(e!~) of g[n] to be
G(e?) = gl0] + g[1)e™*.

Also, when the input to the system is x[n]=(1/4)"u[n], the output is g[n]. Therefore,

o _ Gl
H{e™) = X
For Table 5.2, we obtain |
X(e¥) = v

Therefore, - | » "
H(e) = {g[0] + g[l]le™}1 — 3¢} = g[0) + {gl1] - Zol0lye™ = glile

Clearly, h[n] is a three point sequence.

We have H(e-"") - h[O] + h{l}e—jw + h[2]e"2j“"
and -
H(e“ ™) = hj0] + h{1)e 7= 4 p[2]e” V=™
= h[0] = A{1)e™ + h[2)e ¥
We see that H(e!”) = H(e!™ ™) only if h[1]=0.

fl

We also have

h[0]+ h{1]e=3"/? 4 h[2je=2"/?
G e = bOI- A2
Since we are also given that H(e!'?) =1, we have h[0]-h[2]=1 (S5.14-1)

i

Now not that
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Evaluating this equation at n=2, we have
g2 =0= ll—sh[o] + %Mll + hl2]

Since h[1]=0, .

ehl0 A2 =0 (S5.14-2)
Solving equation (S5.14-1) and  (S5.14-2), we obtain

16 1
k0] = TR and h[2]= 7
Therefore,
hin} = 15[11] - —6 n-—2

5.15 Consider x|n|= sm(wcn)/(nn) the Fourier transform X (e**) of x[n] is also shown in Figure S5.15. We note
that the given signal y[n]=x[n]x[n]. Therefore, the Fourier transformy (e!*) of y[n] is

Employing th_5, we can convert the above periodic convolution into an

aperiodic signal by defining

Then we may write Y(e) = / X (9)X (-

This is the aperiodic convolution of the rectangular pulse X (ei“)shown in Figure S5.15 with the periodic
square wave X (e!). The result of this convolution is also shown in Figure S5.15.

From the figure, it is clear that we require —1+(2w,/x) to be 1/2. therefore, w.=3n/4.
5.16 We may write

w 1 ‘
X(e™) = 5= {1 T [hZa(m__)]}

where * denotes aperiodic convolution. We may also rewrite this as a periodic convolution

. 1 [ . ‘
X&) = — | Ge9Qe“)ds
where (€)= 5= A (e”)Q( )
. 1
) = ——
and G =1z je

3
Q™) = 27\'2-5(&! - %) for 0 S w < 2.
. V k_ - e :- -

(a) Taking the inverse Fourier transform of G(e'*), we get g[n]=(1/4)"u[n]. therefore, a=1/4.
(b) Taking the inverse Fourier transform of Q(e!”), we get



This signal is periodic with a fundamental periodic N=4.
(c) We can easily show that X (e!) is not conjugate symmetric. Therefore, x[n] is not real.

5.17 Using the duality property, we have
1 _ 1
(-1 LN Qr = Gn £ ﬁ(—l) b= 5(_1)
5.18 Knowing that
" er 1-1 _ 3
(5) H 1—cosw+ § B 5_'4‘305‘-“,

we may use the Fourier transform analysis equation to write

3 Ll oo kl, ;l'."...: -
Y e TR
= 4cosw' -nz (2) e

) = w _ﬁ"‘“"“

Putting oa—-2nt in this equation, and replacing the variable n by the variable k

_z: (_) i ej?:rk‘t.

By comparing this with the continuous-time Fourier series synthesis equation, it is immediately apparent that
a=(1/3)(1/2)" are the Fourier series coefficients of the signal 1/(5-4cos(2xt)).
5.19 (a) Taking the Fourier transform of both sides of the difference equation, we have

juw 1 -""_1 _2]'"’] =X ejw .
Y(e’)[l——ge-7 e ()

5 — 4 cos(2nt)

Therefore, Y (&™) 1. 1

H(ejw) = X)) 1~ %efj“:"«f %e—2jw = (i- %e-jw)(l +%e—jw)'

(b) Using Partial faction expansion,

Using Table 5.2, and taking the inverse Fourier transform, we obtain

5.20 (a) Since the LTI system is causal and stable, a signal input-output pair is sufficient to determine the
frequency response of the system. In this case, the input is x[n]=(4/5)"u[n] and output is y[n]=n(4/5)"u[n]. The
frequency response is given by

HE)=Y (") x ()
Where X (e'”) and v(ei®) are the Fourier transforms of x[n] and y[n] respectively. Using Table 5.2, we

1.
1- —e“J“’ ‘

have

2ln] = (%) afo Iy X(e) =
Using the differentiation in frequency property (Table 5.1, Property 5.3.8), we have

4\ e L dX (e J
vint =n (3) " uin) 5 vie) =37 -

Therefore,

(b) Since H(e'*)=Y(e'”)/ x (), we may write v (e*) [1 - %e“-’“} = X(e7) [(4/5)e™] .
Taking the inverse Fourier transform of both sides

virl = gl - 1) = Sar.

5.21 (a) The given signal is
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X[n]=u[n-2]- u[n-6]=9[n-2]+5[n-3]+ d[n-4]+35[n-5]
Using the Fourier transform analysis eq. (5.9), we obtain

X(ejw) = e—2jw + e—l3ju + e—4jw +e,—5ju_

(b) Using the Fourier transform analysis eq. (5.9), we obtain

(¢c) Using alysis (5.9),we obtain

(EJW): i(é)—n e—jwn

= 1 e
9 (1-1/3e™)
(d) using the Fourier transform analysis eq.(5.9),we obtain

X(e")= 20:2" sin(zn/ 4~

n=—o

0

=" > 27"sin(zan/ 4"

= _12[(1/ 2)nejnnl4ejwn _ (1/ 2)ne—jnn/4ejwn]

J n=0

.-

2j 1-(@1/2)e e 1-(1/2)e e
(e) using the Fourier transform analysis eq(5.9),we obtain
. 0 .
X(E)= 3 @/2)" cos[z(n—1)/8k ™"

N=—o0

g ir/8 il

-1

2'1-(1/2)ei"%e ™ 1-(1/ 2)e-i”’8e-1'w]
+ 1 ej;r/4ejw e—jzr/4ejw

]

41— (1/2)e/ % 1 (1/2)e 7%
(f) the given signal is
X[n]=-3-36[n+ 3] - 25[n + 2] — S[n + 1 + S[n -1 + 26[n — 2] + 36[n — 3]
Using the Fourier transform analysis eq(5.9),we obtain
x(e™) =3 — 2% _e y eV 1 2 { Zp
(9) the given signal is
x[n] = sin(zn/ 2) + cos(n) = Zij[ej”"’2 —e im2]4 %[ei”/2 +e 2]

therefore
x(@e")= z[s(W=7/2)-(n+7/2) ]+ 7m[o(W—-1D)+S(W+1)]0<w|< 7
]
(h) the given signal is
X[n]=sin(57n/3) + cos(7m/3)

= —sin(zn/3) +cos(zn/3)
:_%[ejanm _e—iml3]+%[ejn/3+e—jn/3]
x(™)= _z[s(w-n/3)-S(w+r/+ 7[SW-7/3)+5w+x/3)] 0w|< 7

J
(i) x[n] is periodic with periodic 6. the Fourier series coefficients of x[n] are give by

13 i
ak _ 7zx[n]efj(2/r/6)kn
67
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1 2 j(2z16)k
= =% g i@rlokn
0%

1 1_e—j5nk/3
Tl
Therefore, form the result of section 5.2
X ejW - 11— 53
") S2r gl g eon
(j) using the Fourier transform analysis eq.(5.9) we obtain
4
5-3cosw
Using the differentiation in frequency property of the Fourier transform
L & 12sinw
n=) >— >
3 (5—3cosw)

]5(w—%”—2ﬂ|))

Q"

Therefore

X[n]= n(i)‘”‘ _(E)m\ FT 4 . 12sinw
3 3 5-3cosw  (5-3cosw)?

(K)we have

1|W|<E
sin(zn/5 w '
) = D 7 ey -

0% qw
5

X,[n] = cos(72n/2) = cos(in/ 2) < x, (") = A{S(W—712) + S(W+ 7/ 2)}
Inthe range 0 <|w/|< 7, therefore, if x[n]= x [n]x,[n].then
x(e™)=periodic convolution of x, (e™)and x, ™)
Using the mechanics of periodic convolution demonstrated in example 5.15 ,we obtain
Inthe range 0w«
3z
x(e") = 1’5
0, otherwise
5.22 (a) Using the Fourier transform analysis eq(5.8),we obtain

B 1 =4 jwn 1 (3zl4 jwn
x[n]—gjiame dw+gL/4e dw

T
qwl<—
10

- L [sin(3m/4) —sin(an/ 4)]
m

(b) comparing the given Fourier transform analysis eq(5.8),we obtain
X[n]= &[n]+36[n—1] + 26[n —2] — 46[n —3] + S[n —10]
(c) Using the Fourier transform analysis eq(5.8),we obtain
x[n] = i'[”e“'w’zejw"dw
2 I
_ (_1)n+1
7z(n-1/2)
(d) the given Fourier transform is
x(e™) = cos? w+sin?(3w)

=1+ cos(2w) N 1—cos(3w)
2 2

:1+1e2jw +1e—2jw +_1e3jw _le—3jw
4 4 4
Comparing the given Fourier transform with the analysis eq(5.8),we obtain
x[n] = 5[n]+%§[n—2]+%5[n+2]—%5[n—3]—%5[n+3]
(e) this is the Fourier transform of a periodic signal with fundamental frequency %

Therefore its fundamental periodic is 4. also, the Fourier series coefficient of this
Signal are a, = (-1)*. Therefore, the signal is given by

x[n] :Z(_l)ke]k(nlz)n :1_eymlz +e]7m _e3ym12
k=0
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(f) the given Fourier transform may be written as
x(e™) =e ™ W/B) e " — (1/5)) (1/5)"e M
n=0 n=0

=53 (/)" e M —(1/5)3 (1/5)"e
n=0 n=0

Compare each of two terms in the right-hand side of the above equation with the
Fourier transform analysis eq. (5.9) we obtain

X[n] = (%)"*m[n—l]—(%)"“u[n]

(9) the given Fourier transform may be written as
" 219 719
x(e") = — + —
1-1/2e7™  1+1/4e7™

Therefore
2.1, 7,1,
x{n] =3 G)"uln]+ g (=) uln]

(h) the given Fourier transform may be written as
; 1 1 i 1 ; 1 ; 1
x(e")=1+Ze W4 — g2V —gBW — gtiv, =
™) 3 3? 3? 3 3
Compare the given Fourier transform with the analysis eq. (5.8), we obtain

1 1 1 1 1
X[n] = 5[n]+§5[n—1]+§5[n—2]+Eﬁ[n—3]+a5[n—4]+m5[n—5]
5.23 (a) we have form eq.(5.9)

e—Sjw

)

x(e’)= > x[n]=6

n=—o0

(b) note that y[n]=x[n+2] is an even signal. Therefore , y(e)is real and even . This
Implies that vy (e = o.furthermore , form the time shifting property of the Fourier
Transform we have vy (e™)=e!2"X (e™).therefore, wvxe")=e 12"

(c) we have form eq. (5.8)

27x| 0= J:X(ejw)dw
Therefore

fﬂ X (e™)dw = 47
(d) we have form eq.(5.9)

0

X (&)= Y xnl(-D" =2

n=-w0

(e) from table 5.1, we have
av{X[n]}«=—>Re{X (e")}
Therefore, the desired signal is ev{X[n]} ={X[n] + x[—n]}/ 2 this is as shown in figure

Ev{x[n]}
1 1

/2 1/2
-7 7
—@ —0— —eo—o—- @—
-4 10 1 4 l

-1/2

Figure s 5.23 RY

(f) (i) from Parseval’s theorem we have
[“IX(e™) P dw=273|xn] = 287
(ii) using the differentiation in frequencyigroperty of the Fourier transform we obtain
nx[n]«—— j ax(e™)
dw

Again using Parseval’s theorem, we obtain
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- jw ©
[ |% I dw= 27 |n|?| xn] [*= 3167
L w 2

5.24 (1) for Re{X (€™)}to be zero, the signal must be real and odd. Only signal (b) and (i)
Are real and odd.

(2) Im{x(e™)} to be zero, the signal must be real and even Only signal (b) and (h)

Are real and even

(3) Assume Y (e™)=eX (e™). Using the time shifting property of the Fourier transform
We have y[n]=x[n+a] , if y(is real, then y[n] is real and even (assuming that x[n] is real).
Therefore, x[n] has to be symmetric about a/ this is true only for signal (a) , (b), (d), (e), (f), and (h).
(4) since '[’; X (e™)dw = 22x[0] .the given condition is satisfied only is x[n]=0. this is

True for signal (b), (e) , (), (h), and (f).

(5) x(e™)is always periodic with period .. Therefore ,all signal satisfy this condition

(6) since y(gi0y = ix[”] ,the given condition is satisfied only the samples of the signal

n=—ow

Add up to zero. This is true for signal (b), (g) , and (i).
5.25. if the inverse Fourier transform of x (e)is X[n], then
x,[n] = ev{x[n]} = W@ A(W)

And

= odgrgny = LT 7

Therefore , the inverse Fourier transform of B(w) is — jx,[n]. Also, the inverse Fourier transform of
A(w)e ™ is. Therefore, the time function corresponding to the inverse

Fourier transform of B(w) + A(w)e™ will be x,[n+1]— jx,[n]. this is as shown in the

figure s 5.25

. Figures5.25
5.26 (a) we may express X,(e') as

X2(ejw) = Re{Xl(ejW)}+ Re{xl(ej(w72n/3) )3+ Re{xl(ej(w+2;z/3))}
Therefore
X,[N] = ev{x, [n]}[1+e'%"® +e71%7'%]
(b) We may express X;(e’") as
X, (@)= Im{X, (7 )+ 1mix, (e7))}.
Therefore,
X,[n] = Od{x, [n}fe’™ +e 7™ }= 2(~1) Od {x ]}

(c)We may express a as

_dX (ej"’)
a=1"g, loo jCsjin) .
Xl((-:*j”}m:0 B 1 T

(d)Using the fact H(¢’”) is the frequency of an idea lowpass filter with cutoff frequency
n /6, we may draw X,(e’”) as show in figure sb. 26

b ez @) Je{X, ()}

| 1
| | Iﬂ I
Y e | | e
Figure S5.26
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5.27. (a) W(e’”) will be the periodic convolution of X (¢’“) with P(e’“). The Fourier transforms
are sketched in figure S5. 27.
(b) The Fourier transform of Y (¢/“) of y[n] isY (¢’“)=P (¢’") H(¢’*). The LTI system with
unit sample response h[n] is an idea lowpass filter with cutoff
Frequency = /2 .Therefore, Y (¢’°) for each choice of p[n] are as shown in
Figure S5.27.Therefore, y[n] in each case is :

(i) y[nl=0

(ii) y[n]= sin(zn/2) 1-cos(zn/2)
27n z’n?

(iii) y[n]=sin(z/2) cos(zn/2)

z°n? 2/m

(iv) y[n]:z{sin(ﬂnM)}2

v _1fsin(zn/2)

V) y[”]—z[iﬂn }

5.28.Let
1 : : : .
— [ x(e?Ble!“)do=1+e =Y(e!”).
L] xer etk )
Taking the inverse Fourier transform of the above equation ,we obtain
g[nIx[n]= & [n]+ & [n-1]=y[n].

jo
(a-1) k) (a-ii) Z(")
1/2

—JI P T @ 1) >

_1 JI (4]
(a-iii) Z(e') 26)
_ (W
| | -
& 0 1w ' ' /=
i 0 | a1 o
Z jo 7 jo
) /: C i C(e ):\ (a=iv) & Z(e') (b-ii) Nﬂ(e )
' - > L L
ICN B @ 0 o /2 |0 /2 o
7™ Z(e™) b ozle)
(b-iii) ‘ I:J/Z (h—=iv) (h—v)
[ [ R
—JI _ o >
/2 | F » /2 Io n/z s 7

Figure S5.27
(@ Ifx[n]=(-1)",
g[n]= & [n]- & [n-1].
(b)If  x[n]=(1/2)"u[n],g[n] has to be chosen such that

1, n=0
gln]= 2, n=1
0, n>1

anyvalue, otherwise

Therefore, there are many possible chosen for g[n].
5.29.(a)Let the output of the system be y[n].We known that

X (&)=X("")H ().
In this part of the problem
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1-1le7®
(i) we have
X (") = 31
1——e™™
4
Therefore
" 1 1
YE") =[5 —Ill——1
1-"e W 1-Ze ™
4
-2 3
1-tew g 3ew
2

Taking the inverse Fourier transform, we obtain

Y = 3C)"uln] 25" o]

(ii) we have
i 1 1
Y(E™)=I[ 3 1l 1 —]
1-Se™)? 1-Ze
4 2
__ 4 2 3
1_£efjw 1_£efiw (1_lefjW)2
2 4 4

Taking the inverse Fourier transform, we obtain
VI = 4C)"uln] - 2()"uln] - 3(n + ;)" o]
(iii) We have
X (™) =223 s(w— (2K +1)7)
Therefore h

Y(eJW):[zni(s(w-(zk D)) 11 —]

© 1-—e ™
2
= %”ia(w— (2k+1)7)
Taking the inverse Fourier transform, we obtain
Xn = 2 (-1)°
3
(b) Given

1.1 . 1.1 .
hinl== 7eJ7f/2 "ulnl+= 7e—m/2 "uln
[n] = &™) uln]+ 2 e ") uln]
we obtain
H[ejW]: 11/2 + 1/2

1_Zeiti2g-iw 1_1e7j;r/2efjw
2 2

(i)We have

L p—
1-—e™™
2

Therefore

” 1/2 1/2 1
Y[eM=[— — ——]
1—7ej”/267jw 1_fe—jzr/2e—jw 1_fe—jw
2 2

_ A .. B C
1_%ejﬂ/2€—jw 1_1e—jw 1_%efj;r/2efjw
Where A=-j/[2(1-])], B=1/2, and C= 1/[2(1+]j)], therefore
_ _j i n 1 _i n 1 1 n
y[n] = 20~ j)(2) u[n]+2(1+ f 2) U[n]+2(2) uln]
(ii)In this case
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_cos(zn/2) 1.,
ylnl= 3 [4 (2) Jun]

(c) Here
Y[e™]=X(Ee"HEe")=-3e"—e™ +1-2e2"
+6e7 M + 27 — 207V 4o
+3e% 4+ 26V — @3V 4 281
Therefore,

y[n] =38[n+5]+ o[n+4]—-6[n+3]-35[n+ 2]
+o[n+1]+ o[n]+65[n—1] —26[n — 3]+ 46[n—5]
5.30 (a) the frequency response of the system is as shown in figure s5.30
(b) the Fourier transform in figure s5.30 x ) of x[n] is as shown in figure s5.30

(i) the frequency response H(e’) is as shown in figure s5.30. therefore , y[n]=sin( 7z n/8)
(ijthe  frequency response H(e™) is as shown in figure s5.30. therefore

y[n]=2sin( r n/8)-cos( n/4)
(iii) the frequency response H(e™) is as shown in figure s5.30. therefore , y[n]=

1/6sin( 7 n/8)-1/4 cos( 7 n/4)
A
A H(ej”’) Z(e."“) b-i 1 He)
T n/j
—‘ |7 el B R ‘ 5
e e i T ¢n/j g w0 | "
2 . Hiew) b Hew) oiv H(e™) HE™) a 1
. [ 1] b-iii / \ ‘1/21'
| L. - .
-7 /2 n/2 W -1 /6 n/2 -7 /2 w6 w2 w 3 3 o
Figure S5.30

(iv)The frequency response H(_ej “) is as show in Figure S5.30. Therefore, y[n]=-sin( ® n/4).

(c) The frequency response H(e'“) is as show in Figure S5.30.
The signal x[n] is periodic with period 8.The Fourier series coefficients of the signal are

(i)
ax= %ix[n]e—uzﬂ/s)kn
The Fourier transform of this signal is
XE)= S 20,50 - 22k 18)
k=-
The Fourier transform  Y(¢'“) of the outputis  Y(¢'“)=X(¢' ) H(¢'“). Therefore,
Y(€)=2z[a,6(w) + a,6(w—714) +a,5(w+ 71 4)]
In the range o< o] < 7 - Therefore,
y[nl=a, +ae’™* +a e " =5+ [(1/ 4)+(1/ 2)(1/ \/E)JCOS(ﬂﬂ/Z]-).
(i) The signal x[n] is periodic with periodic 8.The Fourier series coefficients of the signal are
ak — %i X[n]e—j(ZI!/S)k/!
n=0
The Fourier transform of this signal is
X(e")= 3 27,6 - 22k /8)
The Fourier transform Y(e'“) of the output is Y(¢/“) =X(¢/“) H(¢' ). Therefore,
Y(')=2x]a,6(w) + a,6(w — 71 4) + a_,5(w + 71 4)]
In the range < o] <7 .Therefore,
ylnl=a, +ae’™* +a e =1+ [(1/ 4)—(1/ 2)(1/ ﬁ)]cos(;znm).
(iii) Again in this case, the Fourier transform X(ej‘“) of the signal x[n] is of the form show in

part(i). Therefore,
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yInl=a, +a,e™ +a,e 17 =1+ |1/4)- 1/ 2)1/v2 )|cos(mn/ 4).
(iv) in this case, the output is
y[n]:h[n]*x[n]:sin[ﬂ/3(n—l)]+sin[7z/3(n +1)]
z(n-1) z(n+1)
5.31.(a) Form the given information, it is clear that when the input to the system is a complex
exponential of frequency g ,the output is a complex exponential of the same frequency
but scaled by the | » o|. Therefore,the frequency response of the system is

H(E )= o], for 0<|w,|<7.
(b)Taking the inverse Fourier transform of the frequency response ,we obtain
h[n]= % [* H(e! b de

0 . 4 .
=4[ e do+ 4 [ 0 do
- 0

= %.[:a)cos(a)n)da)
[ cos(nz)-1
TE T
5.32  From the synthesis equation (5.8) we have
1 = jo 1 = jo
‘:g.[”}_h(e] )da)j| ‘:gL{Hz(eJ )dw}:hl[O]hz[O]
Also, since
hy[n]*h, [n]«T—H, e H, (™)
we have
1 4 jo jo *
gL’Hl(el )"2(eJ )dw:[hl[n] hz[n]]n:o
therefore ,the question here amounts to asking whether it is true that
hy[o)h, [0] = [hy[n]*h,[n]],,
since n[n] and h,[n] are causal, this is indeed true.
5.33 (a) Taking the Fourier transform of the given difference equation we have

o Ye) 1
H(eJ )7 X(er 71+£e""’
2

(b) The Fourier transform of the output will be Y(ei‘")z X(e"“’)H (ej“’) :
(i) In this case

1
x(e)=
l—ie"‘“
2
Therefore
1 1
Y(eJ ”):
Lle’“ }{h Lo
2 2
Y2 y2

1-Lgio g tee
2 2

Taking the inverse transform, we obtain
(1Y 1/ 1Y _
il (3] vl 35wl
(i) In this case 1

14 Lo
2

Therefore , ’
Y(e‘“): !

x(e')=

1,£e’1“’
2

Taking the inverse Fourier transform , we obtain

sl e1 2] ol
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(i) In this case X(ej‘“):1+%e’j”’ :

Therefore Y(e)=1 .
Taking the inverse Fourier transform , we have
yln]=4ln] -

(iv) In this case

X(e’”):l—%e”'” '

Therefore
B 1 1
Y(eJ ):[1——e ! } 1
2 1+>e®

2

=-1+ 12

1+=e
2

Taking the inverse Fourier transform , we obtain

sol=-opl+ o -2 uln]

. 1
(c) (i) We have _ 1--e™ 1
v(e)=| —4 .
1+-e | 1+ Zet
2
1 .
7e—jw
1 + 4

- 1 1 .
1+=e )2 (1+=Ze )2
Qe A+oe™)
Taking the inverse Fourier transform . we obtain

Y(e)=(n +1{7 %Jnu[n]f%n(f ;jnlu[n -1 -

1
1+=e’
Yiew)-| 2 L

1-teio |1y Lo
4 2

(ii) We have

1

1- Lo
4

Taking the inverse Fourier transform , we obtain

yil-( 3] ol
.(iii) We have

: 1 1
(el )=
)T T
1+Ze? 1-=el || 1+=e
2 4 2
_ 2/3 . 2/9 . 1/9
L) 14leir 1 loio
(1+Ee j 2 4

Taking the inverse Fourier transform , we obtain

o= 2012wl 2(-3 ) bl 22 ]

(iv) We have

ver)-[1-ge |

1+£e‘j‘”

2
1 N 2e7%
o1 1

1+ e 14Zele
2

Taking the inverse Fourier transform , we obtain
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y[n]= (— %jnu[n]Jr 2(_3““[” -3]

5.34 (a) Since the two systems are cascaded , the frequency response of the overall system is
H(ej’“): Hl(ej’”)Hz(ej’“)

2-e7

1+%e"3"’
Therefore , the Fourier transform of the input and output of the overall system are related by

Y(ej”’) 2—el

X(ejw )_ l+le—3j(u
8
Cross-multiplying and taking the inverse Fourier transform , we get
y[n]+% y[n—3]=2x[n]-x[n-1] -
(b) We may rewriter the overall frequency response as

43 | b+i3)3 |, (-iva)s

10 teio) |14 tenmgoio | q_Le-nug-io
2 2 2

Hel)=

Taking the inverse Fourier transform , we get
h[n]:ﬂ[—lj u[n]+1+ j\@[le’mj u[n]+ m[le”z”j u[n] -
3L 2 3 2 3 2
5.35 (a ) Taking the Fourier transform of both sides of the given difference equation we obtain
. jo —jo
H(e“”)= Y(e » ) _ b+e7>
X(e””) 1-ae™
In order for ‘H(ejw} to be one . we must ensure that

b+e

1+b® +2bcosw =1+a® —2acosw
this is possible only if b=-a.
(b) The plot is as shown Figure S5.35
(c) The plot is as shown Figure S5.35

= ‘1— ae

<H(E™) <HE™) L, Yl
T AN ‘ T/\ ay w2 |us YA
N NTE 0 T N

(b) ©)
(d)When ,__1 .
2

HeM)= 2
(e 14 Lem
2
Also )
X(ejw)f
1-Lew
2
Therefore 1
( ‘ ) Ste
ye")so—r?>--—+o——
(l+le"wj(l—£e"“J
2 2
5/4 3/4

1—1e""” 1+1e""”
2 2

Taking the inverse Fourier transform we obtain
yil=5( 1) o3[ 3 ol -
This is as sketched in Figure S5.35

5.36 (a) The frequency responses are related by the following expression
1

o) e
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(b) (i) Here H(ejw):l_%e,jw . Therefore , G(ej,u)zj/[l_%e,,-mj and g[n]:&] ufr] Since
1

o) Yer) 1
Xle' 1_%6401

the difference equation relating the input x[n] and output y[n] is

y[n]fi y[n-1]= x{n]

(ii) Here H(ejm)zj/(“%e,w) . Therefore , G(ej,u):l+%e,ju and g[n]:&[n]+%§[n—l] . since

) Yle” 1 5,
G(eJ ):7—))((2]@) =1+Ee !

the difference equation relating the input x[n] and output y[n] is
yln]=x{n)+ 2 -1

(iii) Here H(e,w):[kiewj/(“%e,jwj . therefore , G(em):[l%e,jﬂ,)/[ %e,m,)
and g[n]:G)"u[n]%(ﬂ"*u[n_l] since

Y(ej,,) B 1+%e””

)T .
Xle 1_Lgo
4

G(ej‘“):

the difference equation relating the input x[n] and output y[n] is
y[n]—% y[n-1]= x[n]+%x[n -1]

(iv) Here H(ejw): 1oteio Loz | /(1 2g 10 g2 .therefore
4 8 4 8

o) (12 Be Lo o) [1-Le w_Lga) therefore
4 8 8

4
o) 2 2
) e e
and
g[n]:é[n]JrZ(%) u[n]—Z(—%) uln]
since

5 1
7 142 M _= fZij
ol )= YE") (Ue 8°

the difference equation relating the input x[n] and output y[n] is
1 1 5 1
yln]= 4 vIn-1-gvIn-1=xnl+ 2 xn-1]-2x[n-2]
Here . . A ) -therefore
(v) H(e,w):(l_%e,,w] /[H%e,,w _%e)

G(ej”):(1+%e’j‘” _%efzj(u)/(l_%e—jw) since

the difference equation relating the input x[n] and output y[n] is
y[n]féy[nfl]:x[n]+%x[nfl]7%x[n72]
(v) Here H(ejn,):%(lée,jn,7;9,2,-,,,j .therefore
4 8

G(e;w)z[l%e%_%efzjwj since

We have
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y[n]= 5[n]+%5[n71]7%5[n72]

and the difference equation relating the input x[n] and output y[n] is

y[n]=x[n]+ % x[n —1]—%x[n -2]

(c) The frequency response of the given system is

efjw _ 1e72jw

H(ejn))= : 21 :
1+e7lo 4 g2
4

The frequency response of the given system is

_ 1 gle +1+%e’j‘”
G(ew): H(ej(u):

1+1e""”
2

g[n]:(%)wu[n+1]+[%jnu[n]+1[1jmx[n—1]

4\2
Clearly , g[n] is not a causal impulse response

If we delay this impulse response by 1 sample , then it become causal . Furthermore the
output of  the inverse system will then be [,-1] .the impulse response of this causal system is

g,[n]=g[n-1]= (%Jnu[nh(%jn_lx[n 71]+1(ijn_zu[n -2]

Therefore

4\2
5.37 Give that
| ](LX(E‘””)
(i)Since
X(@EeM)= > xne ™
We may write

X *(e—jW) = ix*[n]e’“””

Comparing with the analysis eq 5.9),we conclude that
x*[n] «——>Xx*e ")

Therefore
R e{x[n]} = X1+ x*[n] «——  X(e™)+X*E™)
(if)Since i i
X(e™)= > x[ne ™"
We may write o
X(e ™) = 3 x[-n
Therefore, o

x[-n] <«——X(e ")
Form the previous part we know that
x*[n] <«——>Xx*e ")
Therefore, putting these two statements together we get
x*[-n] <« X*(e™)
(iii) Form our previous part we know that

& {X[n]} =1+ X0 T XM+ X(e™)
2 2
5.38. From the synthesis equation (5.8) we obtain

1 ¢ o
X[nl=—= " x(e")e™"d
[ xEe"e,

= 1 Wy, jwn + 1 (= —jwy,—jwn
gjOX(e eed, g.[OX(e X d,
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Since x[n]is real.  X(e ™")= x*(e™). Therefore
x[n] :ir Re{X (e™)He"" +e’jW”}dW+ir Im{X Ee")He" —e ™,
70 27 90

=1 j”me{x (e "W)}Zcos(wn)dw'i j Im{X (e™)}sin(wn)d,,
70 70
Therefore,
BW)=" L getx (e)3cos(wn)+ &N '%Im{x(e"w)}sin(wn)
T
5.39. Let y[n]=x[n]*h[n]. Then

Y(e™)= > {xIn]*hnl}e ™"

n=-o

=3 S X[n]*hin -kl "

n=-o0 k=—c0

=3 XK1 3 hin -kl ™

k=- n=—o0

=H (e jw) ix[n]efjwk

H(Ee™)X (™)
5.40. Let y[n]=x[n]*[n]. Then using the convolution sum
yinl= 3 XIKIn[K] (S5.40-1)

k=—o0

Using the convolution property of the Fourier transform,
Y[0]=2i " X(e™)HEM)d, (S5.40-2)
T

Now let h[n]=x*[-n].Then H(e™)=X*(e™) Substituting in the right-hand sides of
equations(S5.40-2)and equating them,

ks 1 (= jw * (oW
Zx[k]x*[k]:gjiwx(ej )X *@")d,

k=-o0

Therefore,
Shxdnlf= %f,,l X(e™)[d,
Now let h[n]=z*[-n].Then H(e™)=2z*(e™) .Substituting in the right-hand sides of equation
(S5.40-1)and(S5.40-2) and equation then.
ix[k]z*(k):%fﬂx(ejw)z*(ejw)dw

n=—x

5.41. (a)The Fourier transform X (e ) of the signal x[n] is

X (e JW) = i X[nkfjwn - Z X[nk—jwn

n=— Ny

Therefore,
X (ejan/N ) = nuii)l([nk 71(2%)kn

n=n,

Now, we may write the expression for the FS coefficients of x[n] X[n] as

+N-1

a, :%ZX[n]e—j(anN)kn :% Z X[np—j(Zn/N)kn

<N> n=n,
(Because x[n]=xnjin the range n, <n<n,+N-1 ). Comparing the above equation with eq. (S5.41-1), we get
ak :%X(ejZHKIN)
(b) (i) From the given information,
X (eJW) —1+e W pp2W, o 3Iw
- e—j(3/2)w{ej(3/2)w + e—j(3/2)w}+ e—j(3/2)w{ej(l/2)w + e—j(1/2)w}
=2e 1'% feos(3wi2)+cos(wi2)}

(ii)From part (a),
a :% X (e'2™/N) :% 27 1G/227kIN £oa5(6 77 ki(2N))+cos( 7 k IN)}

k
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5.42.(a) PEe™)=2z5w-w,) for |wi<z. This is as shown in Figure S5.42

P(e) T 27
] | /I\ ]
- W, 7T w
(b) From the multiplication property of the Fourier transform we have
Ge") == [ X(e")PE" ),
2=

=1 j " X(EeM™)2rs(w-0-w,)d,
277

=X (ei(W*Wo))
5.31. (a) Using frequency shift and linearity properties
V(eM) = X (e )+ X (e™)

2
(b) Let y[n]=v[2n]. Then
Y(e™) =3 vznk

N=—0

Since the odd-indexed samples of v[n] are zero, we may put m=2n in the above equation to get

0

Y(ejW) — _Z V[mk—jwmlz =V(ejW’2)

(Note that the substitution of n by 2m is balid only if the odd-indexed samples in the summation are zero.)
(c) x[2n] is a new sequence which consists of only the even indexed samples of x[n].v[n] is a sequence whose
even-indexed samples are equal to x[n].The odd-indexed samples of v[n] are zero .v[2n] is a new sequence
which consists of only the even indexed samples of v[n].This implies that v[2n] is a sequence which consists
of only the even indexed samples of x[n].This idea is illustrated in Figure S5.43.

From part ().

X (ej(W/Z—zr)) +X (ejwlz)

Ge™)= >
5.44. (a). The signal is show in Figure S5.44.
X[n d
) I e e yin] ¢ e x[n] ¢ e c e v[2n]
iy, oty ey, alls
n ® ® n n
0 0 n 0
32 312 x[n] N8, 1 N3, 1
X
1 1 1 periog=12 Y3_ 1 2 3/2 /\/_2 3@_7 3Nl
...... i i I 2 3/2[ N2 [ 2 312
o1 4|4 LDl R I .
T T T
2 _ N3_ 1
Figure s5.44 /2 2 302 142 RONY
(i) Taking the inverse Fourier transform, the signal is 2 302
X,[n]=x[n+1]
(i) Taking the inverse Fourier transform ,the signal is

x,[n] = x [n—3/2]=sin(zn/3) +sin(zn/ 2) cos(3 / 4) —cos(zn/ 2)sin(37 / 4)
This is as shown in Figure S5.44.

(b). Form part (),
X,[N]=x[n+=w(nT +T)

Also,
X;[n]=x[n—3/2] =w(nT —3T/2)

Therefore, o =-land f=3/2.
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5.45. From the Fourier transform analysis equation
X (") = i x[n]e ™"

=—o0

(a). Comparing the equation for X, (t) with the above equation ,we obtain
X (1) = X (e
Therefore is as X, (t) is as shown in Figure S5.45.
(b). Comparing the equation for X, (t) with the equation y ) ,we obtain
X, () = X (") = x (1)
Therefore is as X, (t) is as shown in Figure S5.45.

(C). We know that od{x[n]}=(x[n]-x[-n])/2. Therefore.

% = 3" od{xinlye ™"

Comparing this with the given equation for X, (t) .we obtain
X (e—j(erIS)t) _ X (ej(erIS)t)

2
Therefore X,(t) isas shown in Figure S5.45.

(d). We know that Re{x[n]}=(X[n]+x*[n])/2. Therefore,
X(e")- 2X *e™) _ 20 Refx[nlle "
Comparing this with the given equation for .we obtain
. ()= x(e—i(ane)t)zx *(gl@rIon)
Therefore is as shown in the Figure S5.45.

5.46. (a). Let x[n]= «"u[n] .Then X(ejW): 1 .Using the differentiation in frequency property,

X3 (t) =

1-ae™ ™
a1 j e
d, (-ae)?
Therefore,
(n+1)na”u[n]<L>jM+X(ejW):;.
d, (1-ae™™)?

(b). From part (a),it is clear that the result is true for r=1 and r=2. Let us assume that it is also true for
k=r-1. We will now attempt to prove that result is true for k=r. We have

-2 ; 1
%l =28 T x @) =
ni(r—2)! Q—ae™)
Re{x ()} A Impa()}
| ™~ . /|\ |
10 104 0 1044 10 10 5 0 10/4 10
Im{x,(t)}

Re{xs()} 124 Imfa(t)}
- N l 2_4 L
_ > -8 4 . )
PN SRNE 8 \! 42 0 ¢

) Relu®} Im{xa(0}
12 1
N Ll ] [
-6 R Y 6 ! -6 3 32 0 32 3 6 .
Figure S5.45

From the differentiation in frequency property,
1 (e

4[N L-ce®)r-1

Therefore,
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(n+Yx,,[n+1] 1
a(r-1) L-ce™™)
The left hand side of the above expression is
(n+Dx,,[n+1] (n+r-1!
a(r-1)  ni(r-1)!
Therefore, we have shown that the result is valid for r if it is valid for r —1. Since,
We know that the result is valid for r = 2 ,we may conclude that it is valid for r =3,
r=4,andsoon.

5.47. (@) If x(ei”)=x(e/“v) then iy is periodic with a period of 1.But we already know that x i) is
periodic with a period of 2 7z .This is only possible if x i~y is a constant for all @ .This implies
that x[n] is of the form ks[n] where k is a constant. Therefore, the given statement is true.

(b) If X(e'”)=X(el@™) then X(e) is periodic with a period of 7. We also know that X eiv) is
periodic with a period of 27 . Both these conditions can be satisfied even if , .., has some
arbitrary shape in the region 0<|e|<7/2- Therefore, x iy need not necessarily be a constant.
Consequently, X[n]need not be just an impulse. Therefore, the given statement is false.

(c) We know from Problem 5.43 that the inverse Fourier transform of 2y is the
sequence v[n] = (x[n]+e"™x[n])/2 .The even-indexed samples of v[n] are identical to the
even-indexed samples of X[N]. The odd-indexed samples of Vv[n] are zero. If X(e/”)= X (e/’?),
then nj=viny- This implies that the even-indexed samples of X[n] are zero. Consequently, X[n]
does not necessarily have to be an impulse . Therefore, the given statement is false.

(d) From Table 5.1 we know that the inverse Fourier transform of x i2+y is the time —expanded signal

X[n/2],n=0,£2,44,---
X‘z)[n]:{ [ O],Otherwise
If X(e") = x(ejzw), then x[n]=x(2,[n]. This is possible only if x[n] is an impulse. Therefore,

a"ufn]=x[n] -

the given statement is true.
5.48. (a) Taking the Fourier transform of both equations and eliminating W©") we obtain

1
jo 3-Zel
H(ejm) = j(((zjjw)) = 1 2 1
_ T atie _ T aie
-5 -
Taking the inverse Fourier transform of the partial fraction expansion of the above expression, we
obtain

AN = 4G)"uln] - ()" ln]
(b) We know that

1 5,
very 3¢
X(e'“’) (1_%e—jzu)(1_%e—jm)
Cross-multiplying and taking the inverse Fourier transform, we obtain

H(e") =

JIn1— yin 11+ £ yin 2] = 3] - 2 x[n-1] -
5.49. (a) (i) Consider the signal x[n] = ax,[n]+bx,[n], Where a and b are constants. Then ,
X(e'”) =aX,(e")+bX,(e*). Also let the responses of the system to x ] and , ;; by y,m and
y,[n]» respectively. Substituting for X (e*) in the equation given in the problem and simplifying
we obtain v (e’”) =av, (e**) +by, (e!”). Therefore, the system is linear.
(ii)Consider the signalx n]=x[n-1. Thenx, )=ei*x (') Let the response of the system to this
signal be y,[n]. From the given equation,
Yl[ej‘”] — 2X1(ej"’) +e—ijl(ejw) _ Xm(ae)Jm)
e (e +e X (@) - TET) | ooy einy
dw
e Y (e)) i H(e™
1
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Therefore, the system is not invariant.
(iii) If x[n]=0S[Nn], X(e!“)=1Then,
Y('“)=2+e71”
Therefore, y[n]=25[n]+S[n—1]
(b) We may write

Y(ej“’)zij

w-r14

w+m 4

X(ejﬁ)H(ej((“fo))dH Figure S5.49

Where H(e!”) is as shown in the Figure S5.49.
Using the multiplication property of the Fourier transform and Table 5.2,we obtain
yin] = 2] )

5.50. (a) (i) From the given information,

1,
Yery 15

X@e") 4.1

H(el) = -
1-Zely1-=e
( 3 ¢ 2 )

Taking the inverse Fourier transform, we obtain
Pln] = 3C)"u[n] - 2)" ]

(i) From part (a), we know that

1 —jo
very  pE
XE“) 4 L v 1 e

1-"e 1-"e
( 3 ¢ 2 )

Cross-multiplying and taking inverse Fourier transform
7 1 1
yIn] =S yin =1+ 5 yIn-2]=x[n] - xn—1]
(b) Form the given information,

. 1 joye
oy _ YRy )
H(E')= oy = 1
X (') 21— =g ivy?
4

We now want to find X(e"*)when y ioy_(1/2)e-i ja+Le-ivy. From the above equation we
2

obtain
) 1 .
e—jw 1_76_“‘) 2
a-,e")

1 1
— ey (14 Zel?
( 2 )°C > )

X (e) =

Taking the inverse Fourier transform of the partial fraction expansion of the above
expression, we obtain

3 ey 3 g+ Endhygn -
=2 (=2)un =1+ 2 G)" uln 1]+ en()™ uln 1]
5.51.(a) Taking the Fourier transform of h[n] we obtain
S _zgrie
H(e™) =Y (") X (") = —2—2

1 30w Lo
4 8

Cross-multiplying and taking the inverse Fourier transform we obtain
yIn1- 3 yIn -1+ £ yin-2 = 2 ] Xn 1]

(b) (i) Let us name the intermediate output @[n](See Figure S5.51).

x[m%ﬁ) =D —=>>—0 yin]
B

42 T T -+ t T

R4
Figure S5.51
We may then write the following difference equations:

15
TZ
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1 1
y[n]+ 3 y[n-1] = Za)[n] +w[n-1]
and
O[N] =2 ofn 1] = Xn] = S x[n 1]
3 2

Taking the Fourier transform of both these equations and eliminating w (e!*), we obtain
17 4, 1

—jo _ 7e—2jw

oy —t+—¢€
H(e) = Y™)_a 8 2
X(e") T

4

Cross-multiplying and taking the inverse Fourier transform we obtain
1 1 7 1
Y[n]—zy[n -2] _Zx[n]+§x[n —1]—5)([”—2]

(i) From (i)
. 1+Ze—jm _le—ij
oy Y(€"™) _4 8 2
H(e!”) = . =
X (&) 1_ge,z,~m
4

(ii)Taking the inverse Fourier transform of the partial fraction expansion of ..y we obtain

R = 26[1] - 25 (- 2)"u[nl + = (C)"uln]

16 2
5.52. () Since h[n] is causal, the nonzero sample values of h[n]Jand h[—n]overlaponlyat n=0
Therefore,
h[n]/2, n>0
a{n[n]} = w =! h[0], n=0
h[-n]/2,n<0
In other words,
2evfh[n]},n>0 (S5.52-1)
hin] =4 e{h[O]}, n =0
0, n<0

Now note that if
h[n]«———H (e')
Then
h[n] + h[-n]
2
Clearly, we can recover qnnfrom gegheioypFrom evf{h[n]}we can use eq.(S5.52-1) to recover

h[n]. Obviously, from h[n] we can again obtain H(e'*). Therefore, the system is completely specified

by  ste{H (e**)}-
(b) Taking the inverse Fourier transform of giefH (e')3, We obtain

av{h[n]}= «T>Ne{H(e)}

adh[n]} = 5[n] +%5[n -2 +%§[n +2]
Therefore, In other words
h[n] = o[n]+ ad[n—2]
and
H(e")=1+0e %
(c) Since nyny is causal, the nonzero sample values of ) and hi_njoverlap only at n = 0.Therefore
h[n]/2, n>0
oogy="TME g nso
—h[-n]/2,n<0
In other words,
20d{h[n]}, n>0
h[n]=4some value,n=0
0, n<0
Now note that if
h[n]«——H (')
Then
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od{h[n]}=h[”]‘2h[‘”] L, fIm{H (e™)}

Clearly, we can recover oggn[nj}from Iim{H(e!*)}. From od{h[n]}we can use eq.(S5.52-1) to recover
hinj(provided h[0]is given).Obviously, from h[n]we can once again obtain H(e/~).Therefore, the
system is completely specified by 1m{H (e/~)}and h[0O].

(d) Let Im{H(e’*) =sinw. Then

od{X[n]} = %5[n -1 —%5[n +1]

Therefore,
h[n] = h[0]o[n]+ o[n+1]
We may choose two different values for . (say 1 and 2) to obtain two different systems whose

frequency responses have imaginary parts equal to Sinw .
5.53. (a) The analysis equation of the Fourier transform is

0

X(€*)="> x[nle "

Comparing with eq. (P5.5é—2) , We have
X[K] :%X(e“z”“”))

(b) From the figures we obtain
X,(e)=1-e1 +2e7%

and

Xz(e]w) — _e21w _ejw _1+e72jw + e73](u + 2e7]4(z) _eijw + 2efj7w
Now,

Xl(ej(ZﬂkM)) -1— e—j/zk/Z + 2e—3jzzk/2
and

Xz(ej(anM)) —1_g iKI2 | gg3imki2 _ Xl(ej(Z;sz)
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Chapter 6 Answers
6.6 (b) the impulse response hi[n] is as shown in figure s6.6,as was increase ,it is clear that the significant
central lobe of hl[n] becomes more concentrated around the origin. consequently. h[n]=h1[n](-1)*n also
becomes more concentrated about the origin.
6.7 the frequency response magnitude |[H(jw)| is as shown in figure s6.7.the frequency response of the
bandpass filter G(jw) will be given by

G(jw) = FT{2h(t) cos(4000t)}

=H(j(w—4000x))+ H(j(w+4000rx))

This is as shown in figure s6.7 ' -

N 1 1 | 1 v/\\//'\
-4000 -2000 -1000 T T T
T T T

G
i@ N

[

-60007r -40007 -20007 O 2000z 40007 60007

Figure S6.7
(@) from the figure ,it is obvious that the passband edges are at 20001Trad/sec and 6000IIrad/sec. this
translates to 1000HZ and 3000Hz,respectively.
(b) (b)from the figure ,it is obvious that the stopband edges are at 160011 rad/sec.this translates to 800Hz and

3200 Hz, respectively.
6.8 taking the Fourier transform of both sides of the first difference equation and simplifying, we obtain the
frequency response H(ejw)of the first filter.

M
e—]zuk
Y(ejm) _ Z;,bk
jo N o
X(e ) lizakeimk
k=1

HE") =

Taking the Fourier transform of both sides of the second difference equation and simplifying ,we obtain the
frequency response H1(e™") of the second filter.

M
N\Kp a-iok
Y(ejw) B g( 1) bke

X(@€") 717i(71)kake’j‘”k

k=1

H(e)=

This may also be written as

M
A b e~ i@k
Y(e") ; ‘ j(0-7)
X (e“”) = N i =H(e ).
1izakeq(m7”)k

k=1

H(e") =

Therefore .the frequency response of the second filter is obtained bu shifting the frequency response of the first
filter by TT.although the first fitter has its passband between-wp and wp. Therefore, the second filter will have
its passband between IT-wpand TT+wp.
6.9 taking the Fourier transform of the given differential equation and simplifying .we obtain the frequency of
the LTI system to be
YE) 2
X(@€¥) 5+jw
Taking the inverse Fourier transform, we obtain the impulse response to be

h(t) = 2e*u(t).
Using the result derived in section 6.5.1,we have the step response of the system

H(e") =
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s(t) = h@®)*u(t) = %[l—e‘s‘]u(t).

The final value of the step response is
2
s(o0) :g.
We also have

5(e0) :%[1—6’5'*’].

Substituting s(t0)=(2/5)[1-1/e"2],in the above equation ,we obtain t0=2/5 sec
(@) we may rewrite H1(jw)to be

. 1 .
H(jo)=(—->)(jo+0.1).
Jo+40
we may then treat each of the two factors as individual first order systems and draw their bode magnitude
plots .the final bode will then be asum of these two bode plots .this is shown in the figures6.10
mathematically. the straight-line approximation of the bode magnitude plot is

20,00 0.1
20log,, | H(jw)|=420l0g,,(®),0,10 @l 40
32,00 40
1 1o, [x(jo)| 4 log, | x(jo)|
40 |
20 |
!
o 150 ;00
> U 01 1 : i
) )
28 | _._._. '
|
Figure S6.10

(b) Using a similar approach as in part (a),we obtain the Bode plot to be as shown in
Figure S6.10.
Mathematically, the straight-line approximation of the BODE magnitude plot is

20, w<<0.2
2010g,, [H ( joo)| = {~2010g,,(),0.2 << @ << 50
—-28,  >>50

6.10. (a) We may rewrite the given frequency response H,(jw) as
250 250 _
(j©)? +505jw+25 (jo+0.5)(jw+50)
We may then use an approach similar to the one used in Example 6.5 and in Problem
6.11 to obtain the Bode magnitude plot(with straight line approximations) shown in

H,(jo) =

Figure S6.11. A
logy, | x(jo)| log,, | x(jo)|
40
20 20
0 L 0, 10D R0
b1 05 Q! -20
-40
-60
-05

Mathematically, the straight-line approximation of the Bode magnitude plot is
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20log,, [H ( jo)| —20log,, (0 )+14,0.5<< @ <<50

20, w<<05
—40log,,(w) +48, @ >>50

(b)We may rewrite the frequency response H, (j@) as
H, (jo) :(ja)+50)[_ - 002 J
(jo)" +0.2jo+1
Again using an approach similar to the one used in Example 6.5,we may draw the
Bode magnitude plot by treating the first and second order factors separately. This
Givens us a Bode magnitude plot (using straight line) approximations as shown below:
Mathematically , the straight-line approximation of the Bode magnitude plot is

—20lo0g,,(w)—34, @>>50
6.12. Using the Bode magnitude plot, specified in Figure P6.12(a). we may obtain an expression
For H,(jw). The figure shows that H,(j®) has the break frequencies @, =1, @, =8And

0, w<<1
20log,|H (jo)|={ —40log, @, 1<<@<<50

@, =40. The frequency response rises as 20dB/decade after @,. At ®, this rise is canceled by a -20

dB/decade contribution. Finally, at @, ,an additional -20 dB/decade. Contribution results in the
subsequent decay at the rate of -20 dB/decade, therefore, we may conclude that
H, (Jo)= Aliw+a) .
(lo+w,)(jo+ o)

We now need to find A. Note that when @ =0, 201og, |H, (jo) | =2.Therefore. H, (j0)=0.05. From eq .

(S6.12-1),we know that

H, (jo)= A
320
Therefore, A =640. This gives us
|_|1 (jw)= 640(jo+1)
(jo+8)(jo+40)
Using a similar approach on Figure P6.12(b), we obtain

Hio)=_52_.
(jo+8)°
Since the overall system (with frequency response H(j @)) is constructed by cascading
Systems with frequency responses H, (jo) and H, (jo),
Hi@)=H, (jo) H, (jo).
Using the previously obtained expressions for H(j@) and H, (jo),
H, (j®)=H({o)H, (jo)= 00jw+40) .

(jo+)(jo+8)
6.13. Using an approach similar to the one used in the previous problem, we obtain
H(jw)= 320
(jo+2)(jo+8)

(a) Let us assume that we desire to construct this system by cascading two systems with
frequency responses H, (jw) and H, (j®), respectively. We require that

HG@)=H, (jo) H, (jo).

Weseethat H, (jo)= 40 and H, (jo)= __8
(jo+2) (jw+80)

And
H, (jo)= _32_ and H, (jo)= _10
(jo+2) (jor+80)
are both valid combinations.
(b) Let us assume that we desire to construct this system by connecting two systems with

frequency responses H, (jw) and H, (j®) in parallel. We require that
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Hiw)= H; (jo) + H, (jo)
Using partial fraction expansion on H(j @) , we obtain
Hiw)= %% - D
(jo+2) (jo+80)
From the above expression it is clear that we can define H, (jw) and H, (j®) in only one

way
6.14. Using an approach similar to the one used in Problem 6.12 ,we have
H(jw)= 5000(jo+0.2)° .
(jo+50)(jor+10)
The inverse to this system has a frequency response
H,(jow)= 1 - 0.2x10*‘§jw+50)(jw+10) _

H(jw) (joo+0.2)
6.15. We will use the results from Section 6.5 in this problem.
(a) We may write the frequency response of the system described by the given differential

Equation as
H(jo)=___ 1t .
(jo)’ +4jo+4
This may be rewritten as
Hi(jo)=____W4____
(jo!2)? +2j(w! 2)+1

From this we obtain the damping ratio to be ¢ =1.Therefore , the system is critically damped
(b) We may write the frequency response of the system described by the given differential equation as
H,(jw)=___ 7 .
5(jw)’ +4jo+5
This may be rewritten as
H, (jo)= /5 :
(jw)? +2(2/5) j(w) +1
From this we obtain the damping ratio to be ¢ =2/5. Therefore , the system is under-damped.
(c) We may write the frequency response of the system described by the given differential equation as

Hy(jw)=—__1 .
(jo)* +20 jo+1
This may be rewritten as
H(jw)=____ 1 .
(j®)* +2(10) j(w) +1

From this we obtain the damping ratio to be ¢ =10. Therefore , the system is under-damped.
(d) We may write the frequency response of the system described by the given differential equation as
H,(jo)=_7+W3)jo .
5(jw)* +4jow+5
The terms in the numerator do not affect the ringing behavior of the impulse response of this
system .Therefore , we need to only consider the denominator in order to determine if the system.
is critically damped, under-damped ,or over-damped .We see that this frequency response has the

same denominator as the one obtained in part (b). Therefore . this system is still under-damped.

6.16. The system of interest will have a difference equation of the form
y[n] —-ay[n-1] =b x [n].
Making slight modifications to the results obtained in Section 6.6.1,we determine the step response of

this system to be
1_ an+1 .
b{ —a ju[n]

The final value of the step response will be b/(1-a). The step response exhibits oscillatory behavior only
if |a| <1.Using this fact, we may easily show that the maximum overshoot in the step response occurs

when n=0. Therefore , the maximum value of the step response is
L(l_a) =b'
l1-a
Since we are given that the maximum, overshoot is 1.5 times the final value, we have
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15 b =b = a=_1
l1-a 2
Also ,since we are given that the final value us 1,
b =1 = b= 3
i-a 2

Therefore, the difference equation relating the input and output will be
y[nl+ ly[n-1]= 3x[n].
2 2

6.17. We will use the results derived in Section 6.6.2 to solve this problem.
(a)Comparing the given difference equation with eq. (6.56),we obtain
T=1 and cosé=-1.
2
Therefore, 0= ,and the system has an oscillatory step response.
(b) Comparing the given difference equation with eq. (6.56),we obtain
T=1and cos@=-1.
2
Therefore, 6=0,and the system has non- oscillatory step response.
6.18. Let us first find the differential equation governing the input and output of this circuit.

Current through capacitor =C  dy(®)

dx
\oltage across resistor = RC  dy(®) .
dx
Total input voltage =Voltage across resistor + Voltage across capacitor

Therefore ,
x(t)= RC WO +yt).
dx

The frequency response of this circuit is therefore
Hijow)= 1 .
RCjw+1
Since this is a first order system , the step response has to be non oscillatory.
6.19. Let us first find the differential equation governing the input and output of this circuit .
Current through resistor and inductor = Current through capacitor = C %
X

Voltage across resistor = RC dy(®) .
dx

2
\oltage across inductor = LC%.
t

Total input voltage = Voltage across inductor + Voltage across resistor + Voltage across capacitor
Therefore
X(t)= LCd?y)+ RC dy(t) +y(t).
dat’ dx

The frequency response of this circuit is therefore

H(jw)= _ 21 —
LC(jw)  +RCjo+1
We may rewrite this to be
H( )= 1
19 _y2 oRi2VCIL 2241

(1/\/LC 1/4LC
Therefore, the damping constant ¢ = (R/2)s/C/L . In order for the step response to have no

oscillations, we must have ¢ =1 .Therefore, we require

RZZ\/E.
C

6.20. Let us call the given impulse response h[n]. It is easily observed that the signal h, [n]=h[n+2] is
real and even . Therefore ,(using properties of the Fourier transform ) we know that the Fourier transform
H,(e*) of h [n]isreal and even . Therefore H,(e'”) has zero phase, we have

0 H(e")=-2w.
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Therefore , the group delay is
T(a)):ig H(el”)=2.
do
6.21. Note that in all parts of this problem Y(j@)= H({j®)X({j®)=-2jw X(j®). Therefore ,y(t)=
—2dx(t)/dt
(a) Here, x(t)= e Therefore, y(t)=—2dx(t)/dt =—2 je™ This part could also have been solved by

nothing that complex exponentials are Eigen functions of LTI systems. Then when x(t)= el Yy(t) should
be y(t)=H(j1) e'=-2je".

(b)Here ,x(t)=sin( w,t )u(t).Then , %=a)o CoS (m,u()+ sin(w,t) J ()= @, COS (a,t)u(t).
Therefore ,y(t)= —2$=—2a)0 COS (w,tyu(t).
(c) Here , Y(jw)=X(jw)H(w)=—2/(6+jw) .Taking the inverse Fourier transform we obtain y(t)=

—2e®u(t).
(d)Here, x(jw)=1/(2+jw). From this we obtain x(t)= € *'u(t). Therefore, y(t)= -2dx(t)/dt=4e *' u(t) -
20 ().
JwW/37m,—-37<w<37
6.22 Note that H(jw)= ) 0,otherwise
(a)Since x(t)=cos@rt+8)X({w)= € 7 5 (w-27)+e 1 & (w+2 ). This is zero outside the region
-3 7 < w<3 & .Thus, Y(@Gw)=H({w)X({w)=(Gw/3 7 IX(jw). This  implies that
y(t)=(1/3 7 )dx(t)/dt=(-2/3)sin(2 7 t+ ).
(b)Since x(t)= cos(4 7 t+ ), X(jw)= e 7 & (w-4)+e™ 7 & (w+4 7). Therefore, the nonzero portions of
X(jw) lie outside the range -3 7 < w<3 7z . This implies that Y (jw)=H(jw)X(jw)=0.Therefore,y(t)=0.
(c)The Fourier series coefficients of the signal x(t) are given by
_ 1 .
ak - i .[<T0> X(t) €
Where Ty=1and W,=27/T,=27, Also,

x(w=27 3 as(W—kw,)
k=—0

The only impulses of X(jw) which lie in the region -37 < w<3 7 are at w=0,2 7 ,and 2 7z .Defining the
signal X, ()= a, =l 7, a = afl =-1/(4j).Putting these into the expression for X, (f) we obtain
X, O=(1/ 7 )+(L/2)sin(2 7 t). Finally, y(t)=(1/3 7z )d X, (t)/dt=(1/3)cos(2 7 t).

6.23. (a) From the given information, we have
) 1,|w|swy,
H, (W)= ) 0,otherwise
Using Table 4.2, we get
ha ()= sin(wt) .

it

(b)Here,
H,(jw)= H, (w) e
Using Table 4.1, we get
h,(t)= h, (t+T)

Therefore,

sin[w_(t+T)]
z(t+T)

(c)Let us consider a frequency response H (jw) given by

h, ()=
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. 1|wi<w, /2
H o (W)= { 0,0therwise
Clearly,
. 1 . .
H.(w)= —[H,({w)*W(w)],
27
Where

W(w)=j2 7 6 (W-W,/2)-j27 & (w-W,/2)
Therefore , from Table 4.1
h, ®= h, ©w()=[ SINW./2) J[-2sin( W, t/2)].
it

6.24. If 7 (w)= Kk, where K, isa constant, then
<H(w)=- k w+Kk,
Where K, is another constant.
(a) Note that if h(t) is real, the phase of the Fourier transform <t H(jw) has to be an odd function.
Therefore, the value of k2 in eq. (56.24-1) will be zero.
Also, let us define H (jw)=|H(jw)|. Then
ho ()= sin(2007t)
it
(i) Here Kk, =5.Hence, < H(jw)=-5w. Then
HGw)=[H({w) e’ = H  (jw) e ’*"
Therefore,

H(t)= ho (t-5)= sin[2007(t —5)]
7(t—5)

(i)  Here Kk =5/2. Hence, <IH(jw)=-(5/2)w. Then,
H(jW):|H(jW)| eJ’«H(jw):HO(jW) e—j(5/2)W
Therefore,

h(t)= h, (t-5/2)= sin[2007(t-5/2)]
7(t-5/2)

(iii) Here K, =-5/2. Hence, <1 H(jw)=(5/2)w. Then,

Hiw)=IHGw)| &' = H, (w) e'C'2"
Therefore,
h(t)= h, (t+5/2)= sin[200z(t +5/2)]
z(t+5/2)

(b)If h(t) is not specified to be real, then < H(jw) does not have to be an odd function. Therefore, the value
of k, in eq. (56.24-1) does not have to be zero. Given only [H(jw)| and 7 (w), K, cannot be determined
uniquely. Therefore, h(t) cannot be determined uniquely.

6.25 (a) We may write H, (jw) as
H,(w= __A-iw) _1-jw
A+ wd-jw) 2

Therefore,
< H, (jw)= tan[-w]
And
d<H,(jw) 1
dw 1+w
Since 7,(0)=1#2=7,(1),7,(W) is not a constant for w. Therefore, the frequency respons has

nonlinear phase.
(b) In the case, H,(jw) is the frequency response of a system which is a cascade combination of two

Ta (W) == 2

system, each of which has a frequency response H, (jw). Therefore.
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<H, (jw) =< H_ (jw)+ < H, (jw)
And
d<H,(jw) 2
dw 1w
Since 7,(0)=2#4=17,(1), 7,(W) is not a constant for all w. Therefore, the frequency response

has nonlinear phase.
(c)IN this case, n_(jw) isagain the frequency response of a system which is a cascade combination of two

systems. The first system has a frequency response p_(jw). While the second system has a frequency
response H, (jw) =1/(2+ jw) - Therefore,
<H, =< H, (jw)+H,(jw)

7, (W) =-2

2

And
_d<aH (W) daH(w)_ 1 2
dw dw  1+w 44w
Since 7 (0)=(3/2)=(3/5)=r,(0), 7,(W) is not a constant for all w . Therefore, the frequency

response has nonlinear phase.
6.26. (a) Note that H (jw)=1-H,(jw), where H_ (jw) is

TC (W) =

) 1,0<|w sw,
H,(jw)= ] 0,otherwise

Therefore,
X h()= & (t)- hy(t)
hy(1)
NEEVAN JANEVAN .
T < YV >
From Table 4.2 .we have t
h (1) = sin(wt)

it
Therefore,

h(®)= & (O- sintwt)
it

(b)A sketch of hy(t) is Figure S6.26. Clearly, as W, increase. h(t) becomes more concentrated about

the origin.
(c) Note that the step response is given by

S(O=h®*u®=u(®)-u®y* hy(t)
Also, note that h,(t) is the impulse response of an ideal lowpass filter. If S, (t)=u(t)* h,(t) denotes
the step response of the lowpass filter, we know from Figure 6.14 that S,(0) =0 and s, =1. Therefore,
S(0+)=u(0+)- S, (0+) =1-(1/2)=1/2
And
S(o0)=u(0)-5;(0) =0
6.27. (a) Taking the Fourier transform of both sides of the given differential equation, we obtain
Hiw)= Y(Ow) _ 1
X(jw) 2+ jw
The Bode plot is as shown in Figure S6.27
(b)From the expression for H(jw) we obtain
< H(jw) =—tan"(w/2)
Therefore,
d<H(jw) 2
T dw 4w

(w) =

2
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(c) Since x(t)= e u(t), i
XGwy= 1
1+ jw
Therefore,
Y(w)=X({wWH(Gw)= 1
A+ jw)(2+ jw)

(d) Taking the inverse Fourier transform of the partial fraction expansion of Y (jw), we obtain
y(t)= e 'u(t) —te ?u(t)
(e) (i) Here,
Y({w)= 1+jw
@2+ jw)*
Taking the inverse Fourier transform of the partial expansion of Y (jw), we obtain
y()= e ?'u(t) —te *u(t)
(ii) Here,
Y(w)= 1
1+ jw)
Taking the inverse Fourier transform of Y (jw), we obtain

y(H)= e"'u(t)

(iii)Here,
Y (jw)= 1
1+ jw)(2+ jw)*
Taking the inverse Fourier transform of the partial expansion of Y (jw), we obtain

yi)= eu(t) *%e‘z‘u(t) _teu(t)

6.28. (a) The Bode plots are as shown below
(b)  We may write the frequency response of (iv) as
H(jw)= 11/10 1
1+ jw 10
Therefore.

ht)= 1L, 1
® T u(t) lOa(t)
and
s(t)=h(t)*u(t)= 11, .- 1
10(1 e )u(t) 1OU(t)

Both h(t) and s(t) are as shown in Figure S6.28.
We may write the frequency response of (vi) as

. 9/10 1
Hiw)= ——+-—
1+ jw 10
Therefore,
h(t)= 3e*u(t)+i5(t)
10 10
and
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9 1
s()=ht)*u(t)= — (L—e "Hu(t) +—u(t
(=h®*u(t) 10( Ju(t) 10 (t)

Both h(t) and s(t) are as shown in Figure S6.28
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Chapter 7 Answers

7.1 From the Nyquist sampling theorem , we know that only if X (j w)=0 for |w| > wg/2 will be signal be
recoverable from its samples. Therefore, X(jw)>5000 1 .

7.2 From the Nyquist theorem ,we know that the sampling frequency in this case must be at least ws=2000
11 .In other words ,the sampling period should be at most T=2 m/ (ws)=1* 107 Clearly ,only (a) and (e) satisfy
this condition.

7.3 (a) We can easily show that X(j w)=0 for |w| >4000 i .Therefore, the Nyquist rate for this signal is
Wn=2(4000 t )=8000 1 .

(b)From the Tables 4.1 and 4.2 we know that X(j w) is a rectangular pulse for which
X(j w)=0 for |w| > 4000 . Therefore, the Nyquist rate for this signal is wy =2(4000 1 )=800 11 .

(c) From the Tables 4.1 and 4.2 we know that X(j w) is the convolution of two rectangular pulses each of
which is zero for |w| > 4000 1 . Therefore ,X(j w)=0 for |w| >8000 1 and the Nyquist rate for this signal is
Wn=2(8000 11 )=16000 11 .

7.4 If the signal x(t) has a Nyquist rate of w, ,then its Fourier transform X (j w)=0 for [w| > w,/2.
(@) From chapter 4, _
y(t) = x (1) + X (1) <Y (jw) = X (jw) + e X (jw).
Clearly, we can only guarantee that Y (jw) =0 for |w| > w,/2. Therefore, the Nyquist rate for y(t) is also w,.
(b) From chapter 4,

y)=  XO 7Y (w)= jw X(Gw).
dt

Clearly, we can only guarantee that Y (jw) =0 for |w| > w,/2. Therefore, the Nyquist rate for y(t) is also w.
(c) From chapter 4,
y(O) =) T Y (W)= (U2 m)[XGW)*X(w)]
Clearly, we can only guarantee that Y (jw) =0 for |w| > w,. Therefore, the Nyquist rate for y(t) is also 2w,
(d) From chapter 4,
y()=x(t)cos (Wot) «T— Y (jw)= (L/2)X(j(w- W) +(1/2)X(j(w+ Wy)).
Clearly, we can guarantee that Y (jw) =0 for |w| > wy+ W,/2. Therefore, the Nyquist rate for y(t) is 3w,
7.5 Using Table 4.2,

FT ©
plt) <—— ZT—” S 5(w-K2zIT)

K=—u

From Table 4.1 ‘ .
pt-1) «——— 27 MY S szi)e”k?-
T k=—o

Since y(t)=x(t)p(t-1),we have
Y (jw)= (1/2 m)[X(Gw)*FT{P(t-1)}]

Kz

=AM 3 X(i(o-k e "

Therefore, Y(j @) consists of replicates of X(j @) shifted by k2 7z /T and added to earth other (see Figure
S7.5).In order to recover x(t) from y(t).we need to be able to isolate one replica of X(jw ) fromY(jw ).

X(o) Ao [ Yio)  Serr
T
A
- //,___,—//”~\\~—-\\\ /}’,___//’-—-\\<£ff\\ r/___,/'/’r\\\\__\\\
“ @, /2 0 @y 12 @ "o -
’ Figure S7.. 274 - 70 2r/ ©

From the figure ,it is clear that this is possible if we multiply vy @) with
T, |oka,

H(je)= {0, otherwise
Where (v, /2)<@ <27 IT) - (@, ] 2).
7.6 Consider the signal w(t)=x, (t)x, (t).The Fourier transform W(j ) of w(t) is given by
W( w)=% [Xi(jo)* X, (jo)].

Since X,(jw)=0 for |o|=w,and X, (j®)=0 for |®|= @,, we may conclude that W(j®)=0 for
|w|= o, + w, .Consequently, the Nyquist rate for w(t) is @,=2(®, + w,).Therefore ,the maximum sampling
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period which would still allow w(t) to be recovered is T=2 7 /(w, )= 7 (@, + @, ).
7.7 We note that

X, (t) =h, (t)*{ jx(nT)a(t ~nm}

=—00

Form Figure 7.7 in the book ,we know that the output of the zero-order hold may be written as
Xo 0= O { > xnyse-nT) 3

n=-w

where h , (t) is as shown in Figure S7.7 By taking the Fourier transform of the two above equations, we have
Xi(o)=H (jo)X, (jo)
Xo(w)=Hy(jo) X, (jo)
We now need to determine a frequency response H , (j ) for a filter which produces x, (t) at its output when
X, (1) is its input. Therefore, we need

Xo(ja)) Hd (jo)= Xl(ja))
The triangular function h, (t) may be obtained by convolving two rectangular pulses as shown in Figure S7.7

4h,0 t Ui *r ug
1 * hy(t)
- *
t
0 T -T o T U T2 b o1 oY gz o Tt
Figure S7.7
Therefore,

h, O={/~T ) hy (t+T2)I( YT ) h, (t+T/2)}

Taking the Fourier transform of both sides of the above equation,

i 1 ., . i
Hl(m):;e” Ho(jw) Ho(jo)

Therefore
X1 (w)=H,(jo) X, (jo)
1 ., . . .
:?e” Ho(jo)Ho(jo) X, (jo)
_1 joT H H X H
-?e o(Jo) Xy(w)
Therefore

Hy(jo)=1e" Hy(jw)=e™'? 2sinwr 12)
T T

7.8 (a) Yes, aliasing does occur in this case .This may be easily shown by considering the sinusoidal term of x(t)
for k=5. This term is a signal of the form y(t)=(1/2) > sin(5 7z t).If x(t) is sampled as T=0.2, then we will always
be sampling y(t) at exactly its zero-crossings (This is similar to the idea presented in Figure 7.17 of your
textbook). Therefore ,the signal y(t) appears to be identical to the signal (1/2)55in(07zt) for frequency 57

is a liased into a sinusoid of frequency 0 in the sampled signal.

(b) The lowpass filter performs band limited interpolation on the signal xft).But since aliasing has already
resulted in the loss of the sinusoid (1/2) > sin(5 7 t),the output will be of the form

X, (t)=i(%)k sin(k 1)

The Fourier series representation of this signal is of the form
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X, (=3 a, e~ j(kz/t)

0
Where a, = j(1/2) kel
j(x2)
7.9 The Fourier transform X(j @) of x(t) is as shown in Figure S7.9

-200 0 2000 @ 0

Figure S7.9
We know from the results on impulse-train sampling that

G(jW):%gX(j(a)—ka)s)),

Where T=2 1/ o, =1/75.therefore,G(jw) is as shown in Figure S7.9 .Clearly, G(jw)=(L/T)X(j @ )=75
X(jw)for|w|<507.
7.10 (@ We know that x(t) is not a band-limited signal. Therefore, it cannot undergo impulse-train
sampling without aliasing.
(b) Form the given X(j @) it is clear that the signal x(t) which is bandlimited. That is, X(j @ )=0 for
| o[> @, . Therefore, it must be possible to perform impulse-train sampling on this signal without
experiencing aliasing. The minimum sampling rate required would be @, =2 @, ,This implies that the
sampling period can at most be T=2 7/ o, = 7 @,
(c) When x(t) undergoes impulse train sampling with T=2 7, @, ,we would obtain the signal g(t) with Fourier
transform

G(jw)= Tléxu(w—kznm)

This is as shown in the Figure S7.10
A

X(jw)

(@)]

o, @ T @, @y 2 @, [0

n
Figure S7.10
It is clear from the figure that no aliasing occurs, and that X(jw) can be recovered by using a filter with
frequency response

T 0<wzow,
H(jw)= 0  otherwise
Therefore, the given statement is true.
7.11 We know from Section 7.4 that

X, (8")= Tikixc(j(w-zﬂkm)

(a) Since X4 (ej“’) is just formed by shifting and summing replicas of X(jw),we may argue that if
X4 (ej“’) is real , then X(jw) must also be real

(b) Xy (ej“’) consists of replicas of X(jw) which are scaled by 1/T,Therefore,if X (ej“’) has a
maximum of 1, then X(jw) must also be real.

(c) The region 3z/4<wl<~ In the discrete-time domain corresponds to the region
3r/(4T)wl<~/T in the discrete-time domain. Therefore |if X , (e )=0 for
3r/4<wl< 7 then X(jw)=0 for 15007z <| w|< 2000z ,But since we already have X(jw)=0 for
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| @[> 20007z ,we have X(jw)=0 for | » |> 15007
(d) In this case, since 7z in discrete-time frequency domain corresponds to 2000 7 in the
continuous-time frequency domain, this condition translates to X(jw)=(j( @ -2000 17 ))
7.12 Form Section 7.4 ,we know that the discrete and continuous-time frequencies €2 and @ are related by

Q = @ .Therefore, in this case for Q = 37 we find the corresponding value of @ to
4

@ =3 1=3000 7 /4=7500 7
4T

7.13  For this problem ,we use an approach similar to the one used in Example 7.2 .we assume that
X, (t)= sin(zt/T)
t
The overall output is

Y (=X, (t2T)= sinltz/T)e-21)]
z(t—-2T)

Form x , (t). We obtain the corresponding discrete-time signal x 4 [n] to be
x4 [n]=x,.(nT)= 1 5[n]
T

also, we obtain fromy  (t),the corresponding discrete-time signal y 4 [n] to be
y4[n=y, (nT) =sinl(z(n -2
AT (n—2)
We note that the right-hand side of the above equation is always zero when n# 2.When n=2 ,we
may evaluate the value of ratio using L' Hospital ' s rule to be 1/T ,Therefore
yq[nl= % o[n—2]

We conclude that the impulse response of the filter is
hy[nl= o[n-2]

7.14 For this problem ,we use an approach similar to the one used in Example 7.2.We assume that
X, (t)= sin[(#/T)]
a

The overall output is

y 0=y T Ty= e/ MOOSI(e/T) (=T 12)- wsin[(x/T)(t=T/2)]
dt ° 2(t-T12) (z(t-T12)

Form x.(t) , we obtain the corresponding discrete-time signal x 4 [n] to be
x4 [n]=x, (nT)= 1 &[n]
T

Also, we obtain from yc(t),the corresponding discrete-time signal yg[n] to be
Y[n]=y«(nT)= (7 /T)cos[z(n-1/2)] . sin[z(n-1/2)]
T (n-1/2) T (n-1/2)
The first term in rig = ht-hang side of the above equation is always zero because cos[ = (n-1/2)]=0, therefore,
ya[n]= sinlz(n-1/2)]
aT(n—-1/2)
We conclude that the impulse response of the filter is
hg[n]= Sinlz(n-1/2)]
2T (n-1/2)
7.15. in this problem we are interested in the lowest rate which x[n] may be sampled without the possibility
of aliasing, we use the approach used in Example 7.4 to solve this problem. To find the lowest rate at which
x[n] may be sampled while avoiding the possibility of aliasing, we must find an N such that
27 o 37” ) N<7/3

therefore, N can at most be2.
7.16 Although the signal xi[n]=2sin( = n/2)/( = n) satisfies the first tow conditions, it does not satisfy the third
condition . This is because the Flurries transform X,(e!) of this signal is rectangular pulse which is zero for
7 [2<|w|< 7 /2 We also note that the signal x[n]=4[sin( = n/2)/( = n)]? satisfies the first tow conditions. From
our numerous encounters with this signal, we know that its Fourier transform X(e!*) is given by the periodic
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convolution of X;(¢') with itself. Therefore, X(¢!") will be a triangular function in the range 0<|w|< m.This
obviously satisfies the third condition as well. T therefore, the desired signal is x[n]=4[sin( = n/2)/( = n)]°.
7.17 In this problem .we wish to determine the effect of decimating the impulse response of the given filter by
a factor of 2. As explained in Section 7.5.2 ,the process of decimation may be broken up into two steps. In the
first step we perform impulse train sampling on h[n] to obtain
Hy[n] i h[2k] & [n-2K]
k=—o0

The decimated sequence is then obtained using
h;[n]=h[2n]=h,[2n]
Using eq (7.37), we obtain the Fourier transform Hp(ej‘“) of hy[n] to be
Ho(e*)=(1/2) H(e')+(1/2)H (™)
H(eiw) 1 1 1

H(e)

2 -7 —ﬂzo 772 T 27

—r Bz —x 0 z 3z7x 5z @  FIGURE S7.17
o 9 4 4 4 4 . .
This is as Stuwvin uiat uie ruurier uanstunn ur ueennared impulse response is

Hy(e'")=Hy(@"?)

In other words , Hy(e!") is Hy(e'*’?) expanded by a factor of 2. This is as shown in the figure above. Therefore,

h;[n]=h[2n] is the impulse response of an ideal lowpass filter with a passband gain of unity and a cutoff
frequency of = /2

7.18 From Figure 7.37,it is clear interpolation by a factor of 2 results in the frequency response getting
compressed by a factor of 2. Interpolation also results in a magnitude sealing by a factor of 2. Therefore, in this
problem, the interpolated impulse response will correspond to an ideal lowpass filter with cutoff frequency =/
and a passbhand gain of 2.

7.19 The Fourier transform of x[n] is given by

| { 1 |ol<o
X@E“)= Lo  otherwise
This is as shown in Figure 7.19.

(a) when ©,; <31 /5, the Fourier transform X,(e') of the output of the zero-insertion system is shown in
Figure 7.19. The output W(ej“) of the lowpass filter is as shown in Figure 7.19. The Fourier transform of the
output of the decimation system Y(e!*) is an expanded or stretched out version of W(e!*). This is as shown in
Figure 7.19.
therefore, ~ y[n]=1 sin(en/3)

5 m
(b) When ;>3 /5, the Fourier’s transform X;(e') of the output of the zero-insertion system is as shown
in Figure 7.19 The output W(e'*) of the lowpass filter is as shown in Figure 7.19

A Jo
X, (e™)
X, (6! A r A
(9 W) 1
L 1 - _ | = Ly
® 2n3 073 [03 Y T o) o > — 50 w/
1 v 3 T T Y Yo /s 0 3 7
1 Xl(eiw) A ; !
- 1l W(Ee™) 2 ME)
e
, O
> @

3 3 3 3 -7 ‘A % 7 Figure S7.19
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The Fourier transform of the output of the decimation system Y(e'*) bis an expanded or stretched out
version of W(e'”) .This is as shown in Figure S7.19. Therefore,

y[n]%a[n]

7.20 Suppose that X(e!) is as shown in Figure S7.20, then the Fourier transform Xa(e!”) of the output of the
output of Sp, the Fourier transform X;(e'”) of the output of the lowpass filter , and the Fourier transform Xg(e’
“) of the output of Sg are all shown in the figures below. Clearly this system accomplishes the filtering task .

Jo
Xl(e.]a)) Txl(e ) % A X(eJm)
} - T - - T e /,x\\ /,‘\\ R
v/ 0 T ) A 0 A T (0}
- 0 T
m)(l(e“) 2 X, (") X, (™) A X () 4 X (E)
Lo : ﬁ i 1.,
-7 077' 0 7 o F o X T %o % w 70 Z
8 8 2 > 4 4 4 4 4 4
Figure S7.20

(b) Suppose that X(e!*) is as shown in Figure S7.20 ,then the Fourier transform Xg(e”) of the output of
Sg ,the Fourier transform X;(e'")of the output of the first lowpass filter ,the Fourier transfore Xa(€'”) of the
output of Sa ,the Fourier transform X,(e'") of the output of the first lowpass filter are all shown in the figure

below .Clearly this system does not accomplish the filtering task.
7.21

(a) The Nyquist rate for the given signal is 2X5000 = =10000 = . Therefore in order to be able to recover x(t)
from x,(t) ,the sampling period must at most be Tpya=2 7 /10000 =2X10™ sec .Since the sampling
period used is T=10*<Tpax.X(t) can be recovered from Xp(t).

(b) The Nyquist rate for the given signal is 2 X 15000 = =30000 = . Therefore in order to be able to recover x(t)
from x,(t) ,the sampling period must at most be Tyax=2 ™ /30000 =0.66 X10™ sec .Since the sampling
period used is T=10">> Ty X(t) can not be recovered from Xp(t).

(c) Here, I {X( )} is not specified. Therefore, the Nyquist rate for the signal x(t) is indeterminate. This
implies that one cannot guarantee that x(t) would be recoverable from x(t).

(d) Since x(t) is real,we may conclude that X(j »)=0 for |« |>5000. Therefore the answer to this part is
identical to that of part (a)

(e) Since x(t) is real, X(j »)=0 for | @ |>15000 = . Therefore the answer to this part is identical to that of part
(b)

(F If X(jw)=0 for |w|> wq,then X(j @ )*X(j w)=0 for |w|>2w, Therefore in this part X(j »)=0 for |« |>
7500. The Nyquist rate for this signal is 2X 7500 = =15000 = . Therefore in order to be able to recover x(t)
from xp(t) ,the sampling period must at most be Ta=2 7 /15000 =1.33%X10™ sec .Since the sampling
period used is T=10""<Tax, X(t) can be recovered from Xp(t).

(9)
If [ X(j®)|=0 for » >5000 = ,then X(j»)=0 for |»|>5000 = . Therefore the answer to this part is

identical to that of part (a).
7.22 Using the properties of the Fourier transform, we obtain
Y(j @)=Xa(j @ )Xa(j ).
Therefore, Y(j © )=0 for | |>1000 = .This implies that the Nyquist rate for y(t) is2 X 1000 = =2000
. Therefore, the sampling period T can at most be 2 7 /(2000 = )=10"sec. Therefore we have to use T<10>sec
in order to be able to recover y(t) from y,(t).
7.23
(&) We may express p(t) as
P()=p1(t)-ps(t-2);

Where p,(t)= Zé(t —k2A) now,
k

=—w
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Pl(jw)z% S 5(w-71A)

Therefore, h _
P(jw)= Pr(jw)-e? APy o)
Q P,

1 jw

T T TET T T

57/A —4n/A37/A27/A1z/A O 7z/A 27/A 3n/A 4x/A 5x/A w
1/ Xp'vw
P A AEAE AN AN AT
-57/A -37/A ~1z/A 0 7x/A 3z/A 5z/A W
/A
N LA Ten, o
-57/A -37/A ~1z/A 0 x/A 3z/A 57z/A W
A 2A
KT Ty v B . EC
cos(zt/A)  (p) Figure ST.23 cos(at/A) 4n (o)
AS(t) _
2,/ T — ; ) — T 5(ju)
_2rx 7 w
1 L7
—T —A O A T t (b)
(@) Figure S7.24
Is as shown in figure S7.23.

Now,
Xo(i @)=L [X (jo)*P(je)]
2

Therefore, Xp(j ) is as sketched below for A< /(2w ), The corresponding Y(j «) is also sketched in
figure S7.23.

(b) The system which can be used to recover x(t) from x,(t) is as shown in FigureS7.23.

(c) The system which can be used to recover x(t) from x(t) is as shown in FigureS7.23.

(d) We see from the figures sketched in part (a) that aliasing is avoided when o << n/A therefore, Amna=
T /Q) M.

7.24 we may impress s(t) as s(t)=s(t)-1,where s(t) is as shown in Figure S7.24 we may easily show that
s(o)= 3 wa(m-kznm

k=—o0

From this, we obtain

= k
Clearly, S(j @) consists of impulses spaced every 2 = /T.
(a) If A=T/3, then

S(jw) = 3 4SINCKT) 5, ko7 /T)-276 ()
K= k
Now, since w(t)=s(t)x(t),
o1 4sin(27k /3)
W(jo)=-- k;wik
Therefore, W(j » )consists of replicas of X(j ) which are spaced 2 = /T apart. Tn order to avoid aliasing, ® w
should be less that  /T. Therefore, Tmax=2 T/ ®

() If A=T/3, then

X (j(w—k27IT)) - 272X (o)
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Sio) =3 743'”(2’*/ 8 5 —ka2x/T) 270 ()
k=—o0
we note that S(j @ )—0 for k=0,42, X4,.....This is as sketched in Figure S7.24.
Therefore, the replicas of X(j @ )in W(j ») are now spaced 4 = /T apart. Tn order to avoid aliasing, v should
be less that2 = /T. Therefore, Tmax=2 T/,
7.25 Here, x1(KT) can be written as
X1(kT)= sin[z(k —n)]
k;w z(k—n) X
Note that when n7Kk,
sinfz(k —n)]
z(k —n)
And when n=k,
sin[z(k —n)]
7z(k—n)
Therefore,

=0

=1
X (KT)=x(KT)
7.26. We note that
2
paw):?” 5 (w —k2 7 /T)

Also, since xp(t)=x(t)p(t).
Xp( w)=2i{ X(o)*P(jo)}

=1 x(j(w —k2 7 /T))
=

This is sketched in Figure S7.26.

20T .
A
—4n|T —2n/T 2 /T 1n /T
N M M
\/ W ’\ﬂ w0
—2n/T 0 ?H/T—wz 2n /T
Figure S7.26

Note that as T increase, 27 — o ,approaches zero. Also, we note that there is aliasing
T

When
2(1)1—(1)2<2l_ 0)2<0)2
T
If 2w - w,=0(as given) then it is easy to see that aliasing does not occur when
0<27 — 0,<2w;— w,
T

For maximum T, we must choose the minimum allowable value for2z — w , (which is zero).
T

This implies that Ta=2 1/ @ ,. We plot X,(j @) for this case in Figure S7.26. Therefore,
A=T, o =21 /T,andw =0 p—
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7.27.(a) Let x4(j @) denote the Fourier transform of the signal x,(t) obtained by multiplying
x(t) with e7°% Let x,(j @ ) be the Fourier transform of the signal x,(t) obtained at
the output of the lowpass filter. Then, X;(j @), Xa(j @ ),and Xp(j @ ),are as shown in

Figure S7.27
(b) The Nyquist rate for the signal X,(t) is 2 X (® ;,— w1)/2=w ,— w 1. Therefore, the
sampling period T must be at most 2 = /(w ,— w 1) in order to avoid aliasing.

2(j) i) 1’7‘ ()
/ N ‘

- (017022 0 (om0

(01— w2 0 (0 w2

— Wy — Wy 0 Wy Wy
UT L Zy(jw) .
‘ ‘ w0 T A ) RO | v
—2nT 0 21 /T Figure S7.27 JOu

(c) A system that can be used to recover x(t) form x,(t) is shown in Figure S7.27.
7.28.  (a) The fundamental frequency of x(t) is 20 = rad/sec.From Chapter 4 we know that the
Fourier transform of x(t) is given by

X(jw)=2m= Z ax 8 (@ —20 m k).
K=—o0
This is as sketched below. The Fourier transform x.(j @) of the signal x(t) is also
Sketched in Figure S7.28.
Note that

P©)= 5 i S(w—27k 1(5%10™))

5x107° ==,
And
%G9)= LIxG)* Pl )]
T
Therefore, X,(j «) is as shown in the Figure S7.28.Note that the impulses from adjacent
Replicas of x¢(j ) add up at 200 = .Now the Fourier transform x(e'”) of the sequence x[n] is given by
X(&)= Xpj @ )]zt
This is as shown in the Figure S7.28.
Since the impulses in x(¢’”) are located at multiples of a 0.1 = ,the signal x[n] is
Periodic. The fundamental period is 2 = /(0.1 m )=20.

X(jw)
27 (1/2)° 27(1/ 2)"°
T
-200 7 207 0 207 200 77 w
27 .
X, (jw)
2 10 10
7 (1/2) - - 27(1/2)
-200 7 207 0 207 200 77 w
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. . X, (jw) Y

N
.
~ ,’
<
rd \\ /,/
\\~-" \‘~ -
-400 ¢ -200r 0 2007 400 ¢ w
PIAN d N 7’ o
\ W
’/ N ,/ \\ L Ny X(eJ )
,
g ~ p ~ 4 ~
- AY 7 ~ e ~
N ’ ~ ’ ~
A ’ So //
N
AN L e L’
~ e S 4
~ Pid ~ Pl
\\ - \\\ -
27 -T 0 T

(o) The Fourier series coefficients of X[n] a

2z (L)% k=0,£1,£2,....,+9
T 2
= 4z (1) k=10
T 2
7.29. From Section 7.1.1 we know that
Xp@”):%k;x(j(msznm)

x(e™), Y(e™), Y,(j@),and Y(j @) are as shown in Figure 57.29
7.30. (a) Since x(t)= 6 (t),we have

dy. () +y(t)= 6 (t)
dt

Taking the Fourier transform we obtain

jeY(e)tY(je)=1
Therefore ,
Ye(jo)= 1, andyt) =e'u().
jo+1
(b) Since y.(t) =e™u(t) ,

y[n]= ye(nT)=e™"u[n].
Therefore,

YE)=— Lt

1-eTe

7x10* 37x10*

X(elw)=X (J‘”
/’X\Uw) /\ /’\
/\ A .

Y(E*)=XE")HE")

Y, (io) =Ys (jo)H (jo)
¥, (jw) = X (e*")
T T
N AN N
—27 _Z Z 27[ @ —Arx10* 0 Az x10* —%xlo‘ %xlo‘
Also,
H(E)=w ) = 1 =1—e e
ve©) lil-eTe )
Therefore,
hin]= 8[n]—e '8 [n—1]
7.31. i

In this problem for the sake of clarity we will use the variable Qto denote discrete
frequency. Taking the Fourier transform of both sides of the given difference equation we obtain
H(e)=yEem = 1
X () 1_£e-jsz
2
Given that the sampling rate is greater than the Nyquist rate, we have
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i 1
X(e'9)=?xc(j Qm), for —mn<Q<n
Therefore,

; 1 ..
2= Zx (jQIT
Y(e")=5%0Q/T)
1-Lein
2

For — n << Q << = .From this we get

_ 1.
Y(jw)= Y(e’WT): = ?XC(JCO)
1_£e—j1/)T
2
For — n/T<< o < n/T. in this range, Y(j @ )= Y,(j @ ).Therefore,

He(j @)= YC(J_CO) = Ut
XC(J({)) 1_Ee—ij
2
7.32.  Letp[n]= i STn—1-4K] .Then from Chapter 5,
k

=

wy_ e © I
p(e™)=e ZT” z S(w—27k /1 4) —% Z @ 12k/46(0-2k/4)
k=—0 k=—00

Therefore,
G(e™)=_L [ p(e")x(e ")do
71' -7
_13&, . .
_2287J2”k/4x(ej(0)72”k/4))
k=0
Since x(e™) =0 for n /4<|w |< =, G(e) is as shown in Figure S7.32.

1 XM

v

Figure S7.32

Clearly, in order to isolate just x(ejW) we need to use an ideal lowpass filter with
Cutoff frequency = /4 and passband gain of 4. Therefore, in the range |w |< 7,
4, |w|<n/d

HE )=
0, m/AK|o|s™®
7.33. Lety[n]=x[n] i S[n—3k]-Then
k=—00

Y(ej‘”):} $ i(w-27k13)

3;x(e )
Note that sin( = n/3)/( = n/3) is the impulse response of an ideal lowpass filter with cutoff frequency =
/3 and passband gain of 3. Therefore,we now require that y[n] when passed through this filter should yield

X[n]. Therefore, the replicas of x(ej‘“) contained in Y(ej‘”) should not overlap with one another. This is
possible only if x(e'") =0 for n 3<|w|< .

7.34.  In order to make x(e'*) occupy the entire region from — = to  the signal x[n]
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must be downsampled by a factor of 14/3.Since it is not possible to directly
downsample by a noninteger factor, we first upsample the signal by a factor of 3.
Therefore, after the upsampling we will need toreduce the sampling rate by 14/3 X
3=14. Therefore, the overall system for performing the sampling rate conversion is
shown in Figure S7.34.

| zero- . ) 14
insertion _IZEI_>

n
X[E] n=0,£3,£6,... y[n]=p[14n]
w[n]= 0, otherwise Figure S7.34

7.35 (a) The signals x,[n] and x4[n] are sketched in Figure S7.35.

'HTHTXPM Tl TXd[n]

12 1 Xa(€")=X,(e""?)

Decimation | __,

Y

y[n]

- 3
Z . 8z

- 37
4 4 4 4
(b) y (ej”) and x, (i) @are sketched in Figure s7.35

- —l2 —l2 1

7.36. (a) Let us decnote the sampled signaled signal by x,(t). We have

)

X, (&) = > x(nT)s(t—nT)

n=—o0

Since the Nyquist rate for the signal x(t) is 277 /T ,we can reconstruct the signal from
Xp(t). From Section 7.2,we know that
X(t) = X, (t) *h(t)

where
Therefore
dx(t) dh(t)
2 x () F—L
dt % dt

Denoting 9h(®) by g(t),we have
dt

2 —x, %90 = L xDg(e-nT)
Therefore, _
dh(t) cos(A/T) Tsin(at/T)
git) = e - 5
t t at
(b) No.

7.37.  We may write p(t) as
p)=p:(t)+pa(t-A),

where

b= > 5(t—27k W)
Therefore,

p(jw)=1+e")p,(jo)
where

pu(jo) = w5~ kw)

K=—c0
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Let us denote the product p(t)f(t) by g(t). Then,
g(t) = p() f(t) = p,(t) T (1) + p, (L —A) (1)
This may be written as

g(t) = ap,(t) + bp,(t— A)
Therefore,
G(jo) = (a+be ™ p,(jw)
with p,(jw) is specified in eq.(s7.37-1). Therefore
G(jw) =w [a-+be " J5(e — kw)

k=-o

We now have
y, (£) = x(t) p(t) f (t)
Therefore,
V(i) =5 [6ie) *x(jo)]
This give us

Y, (jo) :\zlv—ﬁZ[a+be’jMW}<(j(w—kW))
In the range 0< @ <W, we may specify Yi(j» ) as
Y,(j) = S [(a-+ b)x(jo) + (a-+ be )x(j( -W))]

since Y, (jow)=Y,(jow)H,(jw), in the range 0< @ <W we may specify Y(j ») as

Y, (jo) = %[(am)x(jw) +(a+be ™ )x(j(w-W))]
Since Y, (t) = x(t) p(t), in the range 0< © <W we may specify Y3(j » ) as
Y, (jo) :%[Zx(jw) +(+e M )x(j(0-W))]

Give that 0<WA< = ,we require that v, (jw)+Y,(jw) =kx(jo) for 0<w<W.
That is
W o W s .
5 l@x jas ipyio)]+ 2~ [are (i@ -W)l=kx(je)
V1 2z
This implies that
1+e ™ + ja+ jhe ™™ =0
Solving this we obtain
A=1, b=-1,
When WA= /2. More generally, we also get
a=sin(WA)+@+coswa)) and |, __1+cos(Wa)
tan(WA) sin(WA)

except when WA=7/2 Finally, we also get k = ivl[l/(z + ja+ jb)]
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Chapter 8 Answers
8.1 Using Table 4.1, take the inverse Fourier transform of Y (j(w—a,)) . This gives y(t) = 2x(t)e™™" .

Therefore,
m(t) = 2™,
8.2 (a) The Fourier transform Y( jw) of y(t) is given by
Y (jw) = Xt(j(o-a,))-
Clearly, Y (jw) is just a shifted version of X (jw). Therefore, x(t) may be recovered from y(t)
simply by multiplying y(t) by e ™' There is no constraint that needs to be placed on @, to ensure

that X(t) isrecoverable from y(t).
(b) We know that
¥, (t) = Re{y(t)} = x(t) cos(e1).

The Fourier transform Y, (jw) of y,(t) isas shown in Figure S8.2

V(W) = X (i(@-0)+5 X i@+ )

X(j(o+a,) Y(jow) _
X(j(o-a,))

_a)c 0 \ a)c g

-0, +10007 @, —10007
Figure S8.2
If we want to prevent the two shifted replicas of yj,) from multiplied by cos(2000~t), the output will be
X, (t) = g(t) cos(20007t) = x(t) sin(20007t) cos(20007t) = % X(t) sin(40007t)

The Fourier transform of this signal is

X, (jw) :4%_X(j(a)—40007z))—4ijX(j(w+40007z))-

This implies that X, (jw) is zero for | @|< 20007z . When y(t) is passed through a lowpass fiter
with cutoff frequency 20007 ,the output will clearly be zero .Therefore y(t) =0.

8.4 Consider the signal
y(t) = g(t)sin(4007t) + 2sin®(4007t)
=sin(2007t)sin?(4007t) + 2sin®(4007t)
=5in(2007t)[ (1-cos(8007t))/ 2 |+ 25in(4007t) [ (1-cos(800t) )/ 2 |
= (1/2)sin(2007t) — (1/4){sin(10007t) —sin(6007t)}
+5in(4007t) — (1/ 2) {sin(12007t) —sin(4007t)}
If this signal is passed through a lowpass filter with cutoff frequency 400 7 ,then the output
will be
y, =sin(2007t) .
8.5 The signal X(t) is as shown in Figure S8.5

VA

0

Envelon of
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Figure S8.5
The envelope of the sig?nal @(t) is as shown in Figure S8.5.Clearly,is we want to use asynchronous
demodulation to recover the signal X(t) ,we need to ensure that A is greater than the height h of the highest
sidelobe (see Figure S8.5).Let us now determine the height of the highest sidelobe.The first zero-crossing of
the signal X(t) occurs attime t, such that
10007t = 7,=>t, =1/1000.
Similarly , the second zero —crossing happens at time t; such that
10007t, = 277, =>t, = 2/1000.
The highest sidelobe occurs at time (t, +1t,)/ 2. that is ,at time ¢ —3/2000. At this time, the amplitude of

X(t) is
)= SNG7/2) 2000
73/2000 37

Therefore , A should at least be 2990 The modulation index corresponding to the smallest permissible
37

value of Ais
Maxvalue _OF x@® 1= 1000 3

~ Min.possible value of A  2000/3z 2
8.6 Let us denote the Fourier transform of sin(e,)/(zt) by H(jw). This will be rectangular pulse which

is nonzero only in the range | @ |< @,. Taking The Fourier transform of the first equation given in the

problem ,we have
G(jw) = FT {x(t)cos(a,t)} — FT {x(t) cos(e,t)} H (jw)

= FT {x(t)cos(w.t)} {1-H(jw)}
=U2)[X(i(@-@))+ X (j(@+a)|{1-H(jw)}
G(jw) isasshown in Figure S8.6

X(jo) G(jo)
1 1/2 1/2
1)) @ ()
—ay 0 @ 0 @,
FT {g(t)cos ot}
1/4 14 1/4
! ! I\\\ -
—2aw, —w, —w, 0 -o 20,
. w,
Fiaure S8.6

The Fourier transform of g(t)cos(w.t) is also shown in Figure S8.6.Clearly,if we want to recover
X(t) from g(t)cos(w,t) then we have to pass g(t) cos(aw,t) through an ideal lowpass filter with gain
4 and cutoff frequency «,, .Therefore ,A=4.

8.7 In Figure S8.7 ,we show X (jw),G(jw),and Q(jw).We also show a polt of The Fourier transform
of g(t)cos(w,t) then we need to ensure that (1) @, =2a@,, and (2) an ideal lowpass filter with
passband gain of 2 and a cutoff frequency of @, is used to filter g(t)cos(m,t).

, 1 xde 1/2 [G(d) 172
WOy o O -, 0 @, w




FT {g(t)coswyt}

~1 | P

-, — W, —, -, + 0. 0 0, — 0, O, »+ O,
Figure S8.7

[
»

8.8 (a) From Figure S8.8,it is clear that Y (j®) is conjugate-symmetric .Therefore, y(t) is

real.
(b) This part of the problem explores the demodulation of SSB signals through synchronous demodulation.
This idea is explored in more detail in problem 8.29.
Let us assume that we use the synchronous demodulation system shown in the Figure S8.8. The

Fourier Transform Y,(jw) of the signal Y, (t) is shown in the Figure S8.8. Clearly, if we use an
ideal lowpass filter with cutoff frequency @, and passhand gain of 2,we should recover the original
signal X(t) . Therefore,

X(t) = [y(t)sin(a)ct)]*{%} |

X (je)
/T X (jo)H (jo)
“w, 0 |/c“’

1/

KK‘Aj/Z T % FT{[x(t)*h(t)].coswc
Wo V 0 QCV >

Aj/2
-Wc T /\\\ >
K\/ 0 Wc i
-We T /‘Aj )f(jW)

We
Aj V ﬁ FT{y(®)sinwct}
-2Wc 2We
]/ —y Wy w

Figure S8.8
8.9 Let the signal X (t) and X,(t) have Fourier Transform X,(j®) and X,(j®) as shown in the

Figure $8.9. When SSB modulation is performed on the signals X, (t) and X, (t) ,we would obtain the

signal y,(t) and Y, (t), respectively .The Fourier Transform Y,(jw) and Y,(jw) of these signals
would be as shown in the Figure S8.9(see Section 8.4 for details).
(@) From the figure ,it is clear that the signal y(t) =Y, (t)+Y,(t) would have a Fourier Transform

Y (jw) which is as shown in the Figure S8.9.
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From this figure ,it is obvious that Y (jw) is zero for || 2w,.
(b) In order to obtain X (t) from y(t) ,we have to first remove any contribution in y(t) from
X, (t) .From the previously draw figures , it is clear that we can remove all contribution to y(t) from

X, (t) by first lowpass filtering y(t) using a lowpass filter with cutoff frequency @,. We may then

follow this by a synchronous demodulation system. This idea is illustrated in the Figure S8.9 . Therefore.

sinat }* Asin ot

X (t)= Hy(t)*} cos @t
wt
In order to determine the value of the gain A ,we first plot the Fourier Transform of
} .From this it is clear that A=4.

sinat

x,(t) = Hy(t)*—}cos af
it

—0), @, —0), o,
I ]
-0, o, g -20, o, 20,
1/2
‘\\‘ KK‘ FDM Signal FT
_20)0 —a)C a)c Za)c »
1/4 T
20, —0, o, 20, -

FT {[ y(t) *M} COS @, }
Demodulator it

vy > < T

t
- 0 C()C T _a)f‘ 0 a)c X( )
cos ot

8.10 (a) From Section 8.5 ,we know that in order to avoid aliasing , 27/T >2am,, , where @,, is the
Maximum frequency in the original signal and T is the period of c(t) .In this case , T =10°. Therefore

@,, <10007 .Therefore, X(jw)=0 for @»>10007x.

(b)For Figure 8.24, we know that the Fourier Transform Y (ja) of the signal y(t) consists of shifted
replicas of X (jw) . The replica of X (j®) centered around @ =0 isscaled by A/T, where A is
the width of each pulse of c(t).By using a lowpass filter , we may recover X (jw) from Y (jw). The
lowpass filter needs to have a passband gain of T/A .In  this case ,this evaluates to
107°/(0.25x107°) = 4.

8.11This signal c(t) is

c(t)=ae™™ +a e ™ +a,e™™ +a et +...

Since c(t) isreal, a =a"_,.The Fourier Transform Y (jw) of the signal y(t) = x(t)c(t) is
Y(jo)=aX(j(o-w,))+a" X(j(o+,))+a,X(J(@0-2,)) +a, X(j(0+2a,))- -
This is plotted in Figure S8.11.
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) 20, I 761)6 0 C()cl 26()0 a;
(jo)
/Z(J(w-wc))%
« —) ) .
—a, 0 o, (4]
Figure s8.11

(a)The Fourier transform G(jw) of g(t) is
Glo)=aX((w-a)+a*(j(o+a,))

This is as shown in Figure s8.11  clearly, by comparing G(J @) and Y (JW).we know
That g(t) may be obtained from y(t) by passing Y (t) through an ideal bandpass filter
Which has a passband gain of unity in the range (@, /2)<= | ®|<=(3w/2).
(b)if a = a, e’ *then a’, =| a |e'**Also,
g(t) =(ae™ +ae ' ot+<a
:| 31 | ej(wct+<1a1)x(t)+ | a1 | efj(a)ct+<1a1)
=2|a |cos(wt+<a)mt+<a
therefore, A=2]4a, |, and¢ =< a,.

8.11we need to first determine the maximum allowable period t .from section 8.5.1,we know
That t should be chosen such that 2z ., inthiscase ¢, =20007. Therefore,
T

T <0.5x10°sec.we need to how 10 different pulses within a duration of T

Therefore ,each pulled can be at most A =0.5x107* sec wide
8.12 (a) we know that

PO =5 [ plie)o
Therefore,

171 T,
P(O) = j:i (5 +cos(=H)de

(b)since p(j @ )statistics eq. (8.28),we know that it must have zero —crossings every T,

Therefore,,
p(KT,) =0, fork = 1,21l

8.13 given
y(t) = cos(w,t + mcos @, t)
= Cos(e,t) cos(mcos(w,t)) —sin(a.t) sin(mcos(aw,t))
Butsince o, >>m,and . Z We may make the following approximations
X
cos(mcos(aw,t)) =1
And sin(mcos(a,t)) * mcos(am,t)
Therefore ,
Y= cos(w,t) —sin(w,t)mcos(e, t)
=cos(a,t) fg{sin[(a)c +a)t]+sin[(w, — o )t}
Therefore for w>0,
(i) = 70— ) =L 0=, +0,)) =57 dlo—(@~0,)
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8.14 when a signal x(t) is amplitude modulated with e then the Fourier transform OF the
result is

Vi(e') = x(e! ).
8.15 when a signal x(t) is amplitude modulated with cos( @, ),then the Fourier transform OF the
result is
jo 1 j(w-ap) 1 J(o+ay)
v, (e’ )=(§)X(e @ )+(§)X(e )

y,(e”) =y,(e') only when o, iseitherOor 7.
8.16 we know that c[n]=

sin(S”T”) - sin(%n)

i(@+2)

. 1 NI 3
y(Jw):(?j)X(e ) (zj)X(e )

This is as shown in the figure s8.16.

From the figure ,it is obvious that

y(jw) =0, fO,rOSwS%aﬂd%Sa}Sﬂ

8.17 the Fourier transforms X(e'”),G(e**),andy(e')are shown in figure s8.17.

z(e’)

| o
| /2/\ | h

sz T
8 9 8
Figure s8.16
7(e)
_ ®
d 0 a(e’) a
| | | | >
- z 0 P T w
2 1 Joeen 2
| T >
e e 0 _ L3 7T )
4 z(e) 4
| | >
- -z 0 T V4 w
2 2
Figure s8.17
x(e')
T —
-3 i 0 z z
4 2
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2(e'”)

1 1
‘ l\
| | >
4 0 3
/4
1
2
FT{z[n]cos %n}
0]
I I I 1 :
—IT — Z 4
2 2
—>
A
FT{z[n]*h[n]sin 22} bt
2 2

ez

| ~
x L~ 0 o

8.18.the Fourier transforms ~ x(e'”) and y(e'”) are as shown in figure s8.18.from this figures it is clear

that we wish to accomplish single sideband modulation using the system .in particular, we are interest in
retaining the upper sidebands of the signal. note that in figure 8.21 of section8.4,is shown a continues-time
signal sideband system for retaining the lower sidebands. In this section, it was also mentioned (see
eq.(8.21))that in order to retain the upper sidebands ,the frequency response of the filter used in the system
had to be charge to

H (JC()) — j,0>0

~j,0<0
in this problem ,we extend this same idea to discrete-time system, we assume that the frequency response

H(e!”) of the unknown systems is
jo j,>0

H (ej ) :{1j,;<0

let us now show that this does indeed give us the desired output .we redraw the system

give in the problem with appropriate labels for the intermediate outputs. The fourier

transforms of this intermediate outputs are shown in figure s8.18

from figure s8.18,it is clear that the choice of eiv) was appropriate.
8.19 since 10 different signals have to be squeezed in within a bandwidth of 2, each signal is allowed to
occupy a bandwidth of 2, - after sinusoidal modulation .therefore, before from the figure , it is obvious

0 5
that  yiw)=0, foro < wl< % :
sinusoidal modulation each signal can occupy only a bandwidth of = . the Fourier transformy, (e!”) of the
10
signal obtained by upsampling Xx[n] by a factor of N can be nonzero (in the range|w|<~ )only for

ol therefore ,n has to be at least 20.
20

8.20 note that by choosing p[n]= i an—2k] » We would be eble to getV,[n]and V,[n—1] at the output of

the multipliers .furthermore ,note thaty, (e'”) = v,(e*”) and V(') = v, (e?1”)e 1

this is illustrated in figure s8.20. therefore ,the output of the two branches will be as shown in figure s 8.20.
from thus figures ,it is clears ,that the sum of the two

outputs will be a FDM signal containing both v,[n] and v,[n].

We are given that W<2w+ A @ - lowpass filtering will result in the output

n'’
% x(t) cos(Awt) *
(b) We sketch the spectrum of the output for A@ = o /2 in figure $8.23

8.24 (a)Since s(t)= S sw-kT) We have

k=-o
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S( w):le S S(0-27K/T) = g, 3. S0k )
Let us denote x(t)s(t) by u(t).Then the Fourier transform of the signal w(t) is

W(je) = 2= [X (jo)*S(j)]

=Qi X (i —Kep))

27 &
This is as shown in FigureS8.24. Therefore , the Fourier transform Y (jew) of the
output of the bandpass filter in N
A A
¥ §00= L2 X (j(0- o) + L2 X 0+ g0 1/4
Therefore. — —
_(Aw) ~e i
y ==X O cos(@ )
(b) If A =0 then
A W(jw) e “.
-Aw Aw
I I >
Figure S8.24

_Aw B —jAkz% B
S(jw):zle 25((u72kﬂ/T):le Zé‘(w72k7r/T)
T k=—o0 T k=0

Let us denote x(t)s(t) by  (t).Then the Fourier transform of the signal @ (t)is
. 1 . .
W (jo) = 2—[X (Jo)*S(jw)]
T

" —jAkZ%
=1 .
= > e X(j(w-k27/T))
T k=—00
Therefore, the Fourier transform Y (jw) of the output of the bandpass filter is

o —i2mIT

A . A
Y(ja)):%e_WMX(j(a)—Zﬂ/T))+%e X(j(w+2 =IT))

Therefore,

_(Aa) 27, 27
y (t)= - X(t)cos(_l_t TA)

(c) Form the analysis in part (b).it is clear that the maximum allowable value for O is 7IT.

140

/E'y



Chapter 9 Answers
9.1 (a) The given integral may be written as
J‘ooo e—(5+a)teja)tdt
If O <-5 then the function e ¢+ grows towards oo with increasing t and the given integral does not

converge .but if >-5,then the integral does converge
(b) The given integral may be written as

.fo,w e7(5+cr)tejwtd t

If +>-5 then the function e ¢+ grows towards ooas t decreases towards -ocoand the given integral does
not converge .but if o <-5,then the integral does converge
(c) The given integral may be written as

.[5_5 e—(5+0)te jot d t

Clearly this integral has a finite value for all finite values of O .
(d) The given integral may be written as

J.OO,OO e—(5+o-)teja)td t
If o>-5 then the function e G+ grows towards ooas t decreases towards - co and the given integral

does not converge If o <-5, ,then function g o)t grows towards oo with increasing t and the given
integral does not converge If ~ =5, then the integral stilldoes not have a finite value. therefore, the integral
does not converge for any value of o .

(e) The given integral may be written as

J.O,OO e7(5+o’)tejwtd t+ Iwo e—(5+o‘)teja)td t
The first integral converges for o <-5, the second internal converges if o >-5therefore, the given internal
converges when |o| <5.
(f) The given integral may be written as

J.O,ao e7(5+0)’[ej(utd t

If +>5 then the function e’(’s*")tgrows towards oo as t decrease towards -oo and the given
integral does not converge .but if ~ <5,then the integral does converge.

9.2 (@
X(S)= [~ etu(t-1)e“dt
=[re it
= ei(SJrS)
s+5

As shown in Example 9.1 the ROC will be  Re{s} >-5.

(b) By using eg.(9.3), we can easily show that g(t)=Ae ™

Ae(5+5)t0
S+5
The ROC is specified as Re {s} <-5 . Therefore ,A=1and t,=-1

9.3 Using an analysis similar to that used in Example 9.3 we known that given signal has a Laplace transform
of the form
X)) 1, 1
S+5 s+p

The corresponding ROC is Re{s} >max(-5,Re{ # }). Since we are given that the ROC is

Re{s}>-3, we know that Re{ / }=3 . there are no constraints on the imaginary part of /(.
9.4 We know form Table 9.2 that
X, (t) = —e " sin(2t)u(t) <= X,(s) = X,(-s) , Re{s}>-1
We also know form Table 9.1 that
X()= ¥ (1) <=—>X@E)= X,(-9)
The ROC of X(s) is such that if S; was in the ROC of X,(S), then -S, will be in the ROC of X(s). Putting

u(-t-t, ) has the Laplace transform

G(s)=
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the two above equations together ,we have
X=X () =e'sin@u(-t) < —=x@E)= V= 2 Refsl«t
(s-1*+2°
the denominator of the form s°-2s+5. Therefore, the poles of X(s) are 1+2j and 1-2j.
9.5 (a) the given Laplace transform may be written as
X(s)=_ 2s+4 .
(s+1)(s+3)

Clearly ,X(s) has a zero at s=-2 .since in X(s) the order of the denominator polynomial exceeds the order of the
numerator polynomial by 1 ,X(s) has a zero at co. Therefore ,X(s) has one zero in finite s-plane and one zero
at infinity.
(b) The given Laplance transform may be written as

X@)=_st1 = 1

(s-1(s+1) s-1

Clearly ,X(s) has no zero in the finite s-plane .Since in X(s) the of the denominator polynomial exceeds
the order the numerator polynomial by 1,X(s) has a zero at < .therefore X(s) has no zero in the finite s-plane
and one zero at infinity.
(c) The given Laplace transform may be written as
(s—1)(s’+s+1)

(s>+s+1)
Clearly , X (s) has a zero at s=1.since in X(s) the order of the numerator polynomial exceeds the order of

the denominator polynomial by 1,X(s) has zeros at oo .therefore , X(s) has one zero in the s-plane and no
zero at infinity .
9.6 (@) No. From property 3 in Section 9.2 we know that for a finite-length signal .the ROC is the entire
s-plane .therefore .there can be no poles in the finite s-plane for a finite length signal . Clearly in this problem
this not the case.
(b) Yes. Since the signal is absolutely integrable, The ROC must include, the jw -axis . Furthermore ,X(s) has
a pole at s=2 .therefore, one valid ROC for the signal would be Re{s}<2. From property 5 in section 9.2 we
know that this would correspond to a left-sided signal
(C) No. Since the signal is absolutely integrable, The ROC must include , the j -axis . Furthermore ,X(s)
has a pole at s=2. therefore ,we can never have an ROC of the form Re{s}> « . From property 5 in section 9.2
we knew that x(t) can not be a right-side signal
(d) Yes . Since the signal is absolutely integrable, The ROC must include , the j -axis . Furthermore ,X(s)
has a pole at s=2 .therefore, one valid ROC for the signal could be o <Re{s}<2 such that « <0 .From
property 6 in section 9.2 ,we know that this would correspond to a two side signal
9.7 We may find different signal with the given Laplace transform by choosing different regions of
convergence , the poles of the given Laplace transform are

Sy =—2 312—3 1+J§j _1 B3

2

X(s) = s—1

S, =—Z+-— =

2 2 2
Based on the locations of the locations of these poles , we my choose form the following regions of
convergence:

() Re{s}>- 1
2
(ii)-2< Re{s}<- %

(iii)-3<Re{s}<-2

(iv)Re{s}<-3

Therefore ,we may find four different signals the given Laplace transform.
9.8 From Table 9.1,we know that

G(t)= e™X(t)«——>G(s)=X(s—2).
The ROC of G(s) is the ROC of X(s) shifted to the right by 2

We are also given that X(s) has exactly 2 poles at s=-1 and s=-3. since G(s)=X(s-2), G(s)also has exactly two
poles ,located at s=-1+2=1 and s=-3+2=-1 since we are given G( jw) exists , we may infer that jw -axis lies

in the ROC of G(s). Given this fact and the locations of the poles ,we may conclude that g(t) is a two side

sequence .Obviously x(t)= e g(t) will also be two sided
9.9 Using partial fraction expansion
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X@)= 4 __2
s+4 s+3
Taking the inverse Laplace transform,

X(t)=4e*u(t) —2e*u(t)
9.10 The pole-zero plots for each of the three Laplace transforms is as shown in Figure S9.10

T Im /le
Im
\/ \/ . I . \/ .
TANIVAN " I " N\ -
-3 -1 Re -4 Re 1 Re
(a) form Section 9.4 we knew that the magnitude of the Fourier transform may be expressed as

1

(Length of vector form @ to -1)(Length of vector form @ to
we se that the right-hand side of the above expression is maximum for @ =0 and decreases as @ becomes
increasing more positive or more negative . Therefore |H1(ja))| is approximately lowpass

(b) From Section 9.4 we know that the magnitude of the Fourier transform may be express as
(length of vector from @ to 0)

NG 7

(length of vector from w to —%+j73 )(Length of vector from @ to —%—j;)

we see that the right-hand side of the above expression is zero for @ =0.It then increams with
increasing | @ | until | @ | reach 1/2. Then it starts decreasing as | @ | increase even further.

Therefore | H,(jw)| is approximately bandpass.
(c) From Section 9.4 we know that the magnitude of the Fourier transform may be express as
(Length of vector from @ to 0)°
V3 1.3

(length of vector from w to —%+j73 )(Length of vector from @ to —E—j;)

We see that the right-hand side of the above expression is zero for (1) =0. It then increases with
increasing |@| until |@| reaches 1. Then |@]| increases,| H,(jw)| decreases towards a value of
2

1(because all the vector lengths became almost identical and the ratio become 1) .Therefore | H,(jw) | is
approximately highpass.

9.11 X(s) has poles at s=_1 ;
2 72 2

Section 9.4 we know that [X(j @)| is
3 1.3

(Length of vector from @ to %+j7 ) (Length of vector from @ to E—j7 )

(length of vector from @ to —%+j§ )(Length of vector from @ to —%—jg)

The terms in the numerator and denominator of the right-band side of above expression cancel our
giving us | X(j @ )|=1.
9.12 (a) If X(s) has only one pole, then x(t) would be of the form Ae ™ .Clearly such a signal violates
condition 2. Therefore , this statement is inconsistent with the given information.

If X(s) has only two poles, then x(t) would be of the form Ae * sin(a,t) .Clearly such a signa
(b) If X(s) has onl les, then x(t) would be of the f at ,t) .Clearly such |

3 and_l_jﬁ.X(s) has zeros at s=1 +j£and l_jﬁ From
2 2 2

2 2

could be made to satisfy all three conditions(Example: @, =80 7z , & =19200). Therefore, this statement is

consistent with the given information.
(c) If X(s) has more than two poles (say 4 poles), then x(t) could be assumed to be of the

form Ae " sin(a,t) + Be ™™ sin(@,t) . Clearly such a signal could still be made to satisfy all three

conditions. Therefore, this statement is consistent with the given information.
9.13 We have

X(s):%,Re{s}>fl'

Also,
G(s) = X(s) + aX(-s),~1<Re{s}<1
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Therefore, _ gl-s+os+a
G(s) =4l 1 <2 1
Comparing with the given equation for G(s),

a=-1 ﬁzil
2

9.14. Since X(s) has 4 poles and no zero in the finite s-plane, we many assume that X(s) is of the form

X(s) = A .
(s—a)(s—b)(s—c)(s—d)

Since x(t) is real ,the poles of X(s) must occur in conjugate reciprocal pairs. Therefore, we may
assume that b=a"and d=c”. This result in
X(s)=

A
(s—a)s—a")(s—c)(s—c")’
Since the signal x (t) is also even , the Laplace transform X(s) must also be even . This implies that
the poles have to be symmetric about the j @ -axis. Therefore, we may assume that c=—a . This results in

X(s) = A .
(s—a)(s—a’)(s+a)S+a’)

We are given that the location of one of the poles is (1/2)¢ j%. If we assume that this pole is a, we have

X 12, 1 - 1 1
i = 4 4 4
(s- 5® )(s- 2¢ )(S+2e )(S+ze )
This gives us A
X(s)=

S

(32_T+ )( +\/— 2
Also ,we are give that J' x(t)dt = X (0) =4

Substituting in the above expression for X(s), we have A=1/4. Therefore,
1/4

[T

24 2 4
9.15. Taking the Laplace transform of both sides of the two differential equations, we have
sX(s)=-2Y(s)+1 and  sY(s)=2X(s) .

Solving for X(s) and Y(s), we obtain
XE) = s?+4 and - Yie)= s?2+4

The region of convergence for both X(s) and Y(s) is Re{s}>0 because both are right-hand signals.

9.16. Taking the Laplace transform of both sides of the given differential equations ,we obtain

Y(S)[s® + 1+ a)s? +a(l+a)s+a?] = X(s).

X(s)=

therefore,
Y(s) _ 1
X(s) s*+@+a)s? +all+a)s+a?’
(a) Taking the Laplace transform of both sides of the given equation, we have
G(s) = s H(s)*+ H(s).
Substituting for H(s) from above,
(s+1) _ 1

()= S+l+a)s’+al+a)s+a’  sP+as+a’
Therefore, G(s) has 2 poles.
(b) we know that

H(s) =

H(s) = L .
(s +1)(s® +as+a2)

Therefore, H(s) has poles at _y ,_ + Ji) and a( ﬁ). If the system has to be stable,
2

then the real part of the poles has to be Iess than zero. For thls to be true, we require that — /2 <0,

ie,a>0.

9.17 The overall system show in Figure 9.17 may be treated as two feedback system of the form shown in
figure 9.31 connected in parallel. By carrying out an analysis similar to that described in Section 9.8.1, we
find the system function of the upper feedback system to be

H, (s) = 2ls 2
! 1+4(2/s) s+8
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Similarly, the system function of the lower feedback system is

H,(s) = s 1
2 1420/2) s+2

The system function of the overall system is now

3s+12
H()=H,(s)+H,(8) = ——"—.
©) (8 (%) s? +10s +16

Since H(s)=Y(s)/X(s), we may write
Y (s)[s? +10s +16] = X (s)[3s +12].
Taking the inverse Laplace transform, we obtain

2
dYO L1090 16y =12x(1) + 3P0

dt dt dt
9.18. (a) From problem 3.20, we know that differential equation relating the input and output of the
RLC circuit is

d?y() |, dy(t) _
ot + ot + y(t) = x(t).

Taking the Laplace transform of this (while nothing that the system is causal and stable), we obtain
Y (S)[s® +s+1] = X (s).

Therefore ,

Y(s) 1
H(s) =8 _ D g L
®) X(s) s*+s+1 efsy> -2

(b) We note that H(s) has two polesat __ 1 J.ﬁand _ 1, .\3. Ithas no zeros in the finite s-plane.

+1
2 2 2 2
From Section 9.4 we know that the magnitude of the Fourier transform may be expressed as
1

& 5

(Length of vector from o to -%+j73 )(Length of vector from w to _%-jT)

We see that the right hand side of the above expression Increases with increasing |@ | until |@ |

reaches 1 . Then it starts decreasing as |@]| increasing even further. It finally reaches O for |@|=00.
2

Therefore |H,(jw)| is approximately lowpass.

(c) By repeating the analysis carried out in Problem 3.20 and part (a) of this problem with R =103°Q,
we can show that

Hi =Y 1 Re{s} > ~0.0005.
X(s) s*+s+1
(d) We have
1

& 5

7)(Vect.Len.from to -0.0005—]73)

We see that when |@ | is in he vicinity 0.0005, the right-hand side of the above equation takes on
extremely large value. On either side of this value of | @ | the value of |H (j @ )| rolls off rapidly. Therefore,
H(s) may be considered to be approximately bandpass.

9.19. (a) The unilateral Laplace transform is

X(s) = f: e2u(t+1)e dt

(Vect.Len.from  to -0.0005+j

= J‘(: e—me—stdt
=1 Re{s}>-2.
S+2

(b) The unilateral Laplace transform is
X(s)= [ [5(t+1)+5() +e " Du(t +Dle *dt

=[5t +e*]e*dt

=1+ Re{s}>-2.

S+
(c) The unilateral Laplace transform is

X (s) = [ [eu()e " u(®)le "dt

= _[: [e? +e™*]edt
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_r 1 Refs}> 2.
S+2 s+4

9.20. In Problem 3.29, we know that the input of the RL circuit are related by
¥+ y(t) = x(t).
Applying the unilateral Laplace transform to this equation, we have
sy(s) —y(07) + y(s) = X(s)-
(a) For the zero-state response, set y(0™) = 0.Also we have
x(s)=uL{e?u(t)}=_1 .
S+2

Therefore,
y(s)(s+1)=_1

S+2
Computing the partial fraction expansion of the right-hand side of the above equation and
then taking its inverse unilateral Laplace transform, we have
y(t) =eu(t) —e*u(t).

(b) For the zero-state response, assume that x(t) = 0.Since we are given that y©0)=1,
sy(s)—1+y(s)=0=y(s) = i.
s+1

Taking the inverse unilateral Laplace transform, we have

y(t) =e'u(t).

a T Im b b im c T Im d ‘é Im
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AVAVA \N/ . _ -
VAVAY /\/\ — "
-2 R R R R
Figure S9.21

(c) The total response is the sum of the zero-state and zero-input response. This is
y(t) = 2e"u(t) —e *u(t).
9.21. The pole zero plots for all the subparts are shown in figure S9.21.
(a) The Laplace transform of x(t) is

X(s)= J.: (e +e et

= [-e P (s +2)]ly H-e P (s +3)] Iy
=1 1 _ 2545
s+2 s+3 s’+5s+6

(b) Using an approach similar to that show in part (a), we have

e*“u(t)@i, Refs > — 4
s+4

Also,
eelu(t) « ., Re{s}>-5.
S+5-]5
and
e e Pu(t)«H> 1 ,Re{s}>-5-
S+5+ 5

From this we obtain

. 1 . ; 5
esin(5t)u(t)=—|e e —e®e ® |u(t) e >——FF——
(t)u(t) 21[ } (®) (s+5)2+25

where SRe{s}>—5 .Therefore,

2
oty (1 Stin (5t (1) < LT s°+15s+70 = _5-
¢ u()+e Sm( )U() s® +14s% +90s +100 e{s}>

(c)The Laplace transform of X(t) is
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X (s)= _[_Ow(ez‘ +e™ )edt
_ |:_e(s—2)t /(S _ 2)] Ew +|:_e*(5—3)t /(S _3):| Em

1 1 2s-5 .,
= 4+ - =
s—2 s-3 s?-55+6

The region of convergence (ROC) is %e (s} <2.

(d)Using an approach along the lines of part (a),we obtain

e 2 () T e (s} > -2 (59.21-1)
S+
Using an approach along the lines of part (c) ,we obtain
() o efs) <2 (59.21-2)
S_

From these we obtain
2s

s%—

el =e?u(t)+e?u(~t)« 2 —2<Re{sj<2.
Using the differentiation in the s-domain property , we obtain
2, T d |: 2s } 2s*+8
te -— =-
ds|s® -4 (52_4)2’
(e)Using the differentiation in the s-domain property on eq.(S9.21-1),we get

d 1 1
te2u(t oo 9 _ R —2-
e?u(t) ds[s+2} (s+2)2 e{s}>

Using the differentiation in the s-domain property on eq (S9.21-2),we get
ety df 1 .
te®'u( t)(—>ds[s—2} (S_Z)Z,iRe{s}<2
—4s
(s+2)*(s-2)

—2<Refs}<2’

Therefore,
ft|e ™ =te?u(t)—te®u (~t) <«

> —2<Re{s}<2

(f)From the previous part ,we have
|te*u(-t)= —tez‘u(—t)@—ﬁ,me{s} <2
(g)Note that the given signal may be written as X(t)=u(t)—u(t—1) .Note that
u(t)@%,ﬂ%e{s} >0.
Using the time shifting property ,we get
u(t—1)<L>e—:,‘Re{s} >0
Therefore , % (1)
u(t)-u(t-l)@%, All s.
Note that in this case ,since the signal is finite duration ,the ROC is the entire s-plane.
(h)Consider the signal (1) =t[u(t)-u(t -1)]-Note that the signal x(t) may be
expressed as x(t)=x, (t)+x (-t+2) . We have from the previous part
u(t)_u(t_1)<L>$, All s,
Using the differentiation in s-domain property ,we have
X (t)=t[u(t)-u(t-1)]« d{l‘es}_ se’” ‘}*efs , Alls.

ds| s S
Using the time-scaling property ,we obtain
X, (~t) < ,%, All s.

Then ,using the shift property ,we have
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_eps _ S
X, (~t+2) T e se 21+e All s.
s

Therefore ,
—S —S S S
se —§+e Le? —se —21+e All's.

X(t)=x (t)+x (~t+2)« 5 5
(i) The Laplace transform of x(t)=5(t)+u(t) is X (s)=1+1/s,%e{s}>0.

(j) Note that 5(3t)+u(3t):5(t)+u(t).Therefore ,the Laplace transform is the same as the result of the

previous part.
9.22 (a)From Table 9.2,we have

x(t)=%sin(3t)u(t)-
(b)From Table 9.2 we know that

s
s?+9
Using the time scaling property ,we obtain
S
19 ,Re{s} <0
Therefore ,the inverse Laplace transform of  , is
x(t)=—cos(3t)u(-t)-
(c)From Table 9.2 we know that

cos(3t)u(t)«——

,Re{s}>0-

cos(3t)u(-t)«L>-

s-1
(s—1)°+9
Using the time scaling property ,we obtain

s+1
(s +1)2 +9’
Therefore ,the inverse Laplace transform of X (s) is

x(t)=—-e"cos(3t)u(-t).
(d)Using partial fraction expansion on x (s) \we obtain

e'cos(3t)u(t)«—> Refs}>1"

e cos(3t)u(-t)«>- Re{s}<-1’

2 1

X(s)=—o-——= "

- s+4 s+3
From the given ROC ,we know that X(t) must be a two-sided signal .Therefore
x(t)=2e"u(t)+eu(-t).
(e)Using partial fraction expansion on  x (s) ,we obtain
2 1

X(s)=—%-——="

T s+3 542
From the given ROC ,we know that X(t) ~must be a two-sided signal , Therefore,
x(t)=2eu(t)+e u(-t).
(f)We may rewrite X (s) as

3s
X(s)=1+
(s) s?—s+1
:1+#
(s-1/2) +(vB/2)
1is s-1/2 . 3/2

(s-1/2 +(312)  (s-1/2) +(v312)
Using Table 9.2 ,we obtain
X(t) = 5(t)+3e ™ cos(\/3t/2)u(t) +3e " sin (VBt/2)u(t)-
(g)We may rewrite x (s) as
3s
(s+1)°
From Table 9.2,we know that

X (s)=1-
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tu(t)éé,&)&e{s} >0-
Using the shifting property ,we obtain

e'tu (t)%(sjl)z Re{s}>-1

Using the differentiation property ,
%[e’ttu (t)] =eu(t)-te'u (t)%% Re{s}>-1-

Therefore,

x(t)=5(t)—3e"u(t)—3teu(t).
9.23.The four pole-zero plots shown may have the following possible ROCs:

- Plot (a): Re{s}<—2 or —2<Re{s}<2 or Re{s}>2.

- Plot (b): Re{s}<-2 or Re{s}>-2.

- Plot (c): Re{s}<2 or Re{s}>2.

* Plot (d): Entire s-plane.

Also, suppose that the signal X(t) has a Laplace transform X (s)with ROC R.

(1).We know from Table 9.1 that
e ¥x(t) ¢« X (s+3).

The ROC R, of this new Laplace transform is R shifted by 3 to the left .If X(t)e’3t

is absolutely

integrable, then R, must include the jw -axis.

« For plot (a), this is possible only if R was Refs}>2 -

« For plot (b), this is possible only if R was Re{s}>-2.
« For plot (c), this is possible only if R was Refs}>2 -

« For plot (d), R is the entire s-plane.

(2)We know from Table 9.2 that

e'u(t)«-— !
s+1

Re{s}>-1-
Also ,from Table 9.1 we obtain
: X(s)
x(t)[eu(t) [« R RN[Re{s}>-1]
If e™'u(t)*x(t)is absolutely integrable, then R, must include the jw -axis.

- For plot (a), this is possible only if Rwas —2<%Re{s}<2.
-« For plot (b), this is possible only if Rwas Re{s}>-2.
- For plot (c), this is possible only if Rwas Re{s}<2 .

« For plot (d), R is the entire s-plane.
(3)If X(t) =0 for t>1 thenthe signal is a left-sided signal or a finite-duration signal .

- For plot (a), this is possible only if Rwas Re{s}<-2.
- For plot (b), this is possible only if Rwas Re{s}<-2.
- For plot (c), this is possible only if Rwas Re{s}<2 .

« For plot (d), R is the entire s-plane.
(4)If X(t) =0for t<—1,then the signal is a right-sided signal or a finite-duration signal

- For plot (a), this is possible only if Rwas Re{s}>2.
-« For plot (b), this is possible only if Rwas Re{s}>-2 .
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- For plot (c), this is possible only if Rwas Re{s}>2.
* For plot (d), R is the entire s-plane.
9.24.(a)The pole-zero diagram with the appropriate markings is shown Figure S9.24.
(b)By inspecting the pole-zero diagram of part (a), it is clear that the pole-zero diagram shown in Figure
S9.24 will also result in the same X (jw) .This would correspond to the Laplace transform
5oL, wefs) <.
Xl(s) S 2 { }< 2
©+F X (jw)=7—+ X, (jw).
(d) X, (S)With the pole-zero diagram shown below in Figure S9.24 would have the property that <

X, (jw)=+ X (jw)Here, x,(s)= 5:11/2.

©) |X,(iw)=1/|X (jw)|-
(f)From the result of part (b),it is clear that X, (S) may be obtained by reflecting the poles and zeros

in the right-half of the s-plane to the left-half of the s-plane .Therefore,
X, (s)= s+1/2

S+2
From part (d),it is clear that XZ(S) may be obtained by reflecting the poles (zeros) in the

right-half of the s-plane to the left-half and simultaneously changing them to zeros (poles). Therefore,
(s +1)2
X =\
()= Gr2) (572
9.25.The plots are as shown in Figure S9.25.
9.26.From Table 9.2 we have

x, (1) =€ 2U (t) T X, (5) = 512

Re{s}>-2
and
x,(t) =& u(t) <> X, (s) :s—ls,iﬁe{s} >3,
+
Using the time-shifting time-scaling properties from Table 9.1,we obtain
o) e (s)= _
X (t—2)«——>e™*X,(s)= S+2,5Re{s} >-2

and

e—3s

X, (—t+3)<L>e’3SX2(—s):3

5 ,Re{s}>-3
Therefore, using the convolution property we obtain

01 (t-2) e (3o ()= £ )

S+2

9.27.From clues 1 and 2,we know that x (s) is of the form
A .
X(S):(SJra)(Ser)
Furthermore , we are given that one of the poles of X (s) is —1+ j.Since ,is real, the

poles of X (S) must occur in conjugate reciprocal pairs .Therefore, a=1-jandp=1+ j

and A
H )= ey ser D)
From clue 5,we know that x (o)zg.Therefore, we may deduce that aA=16 and
16 ,
H(s)= §?+25+2
Let R denote the ROC of x (s)-From the pole locations we know that there are two

possible choices of R . R may either be %efs) <-101 Re{s}>—1.We will now use
clue 4 to pick one .Note that
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y(t)=e*x(t)«EoY (s)=X(s-2).
The ROC of Y(S)is R shifted by 2 to the right .Since it is given that y(t) is not absolutely
integrable ,the ROC of vy (s) should not include the jw— axis.This is possible only of

R is ®e{s}>-1.
9.28.(a) The possible ROCs are

0) Re{s}<-2-
(i) —2<%e{s}<-1-
(iil) —1<we{s} <1
(IV) gefs)>1-

(b)(i)Unstable and anticausal.
(i) Unstable and non causal.
(iii) Stable and non causal.

(iv) Unstable and causal.
9.29.(a)Using Table 9.2,we obtain

X(s)= Sil,%e{s} >-1

and

H(s):sle,SRe{s}>—2.

(b) Since y(t) =x(t)*h(t),we may use the convolution property to obtain

1 .
Y(s):X(s)H(s):W
The ROCof Y(s) is Re{s}>-1.
(c) Performing partial fraction expansion on Y(s) Ve obtain
1 1

Y(s)=———="

- S+1 s+2
Taking the inverse Laplace transform, we get

y(t)=e"u(t)—e?u(t).
(d)Explicit convolution of x(t) and h(t) gives us

y(t)=JmO h(z)x(t-7)dr
= j: e2e -y (t—7)dr
:e’tJ.l e’fdz- fOI’ t > O
=[e—e™Ju(v).

9.30.For the input x(t)=u(t), the Laplace transform is
X (s)zé,iﬁe{s} > 0.
The corresponding output y(t) :[1_e*t —te*‘]u(t) has the Laplace transform

Y{(s) i 1 L Re{s}>0’

Therefore,
Y (s) 1

H(s)= X(5) (s+1)z ,
Now ,the output yl(t)=[2—3e" +ef3t]u(t) has the Laplace transform

Re{s}>0.

2 3 1 6
Y(s)=o-2 s T =2 gels}>o0.
1(s) s s+l 543 s(s+1)(s+3) els}>

Therefore , the Laplace transform of the corresponding input will be
Y, (s) 6(s+1)
X, (s)= ,Re{s}>0.

H(s) s(s+3)
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Taking the inverse Laplace transform of the partial fraction expansion of X, (s), we obtain

X (t)=2u(t)+4eu(t).

9.31.(a).Taking the Laplace transform of both sides of the given differential equation and simplifying, we
obtain

Y(s) 1

X(s) s*-s-2

H(s)=
The pole-zero plot for H () is as shown in figure $9.31.

Tlm

x‘x >

Figure S9.31

b).The partial fraction expansion of H(s) is
13 13,

H — =
(S) s—2 s+1

(i).If the system is stable ,the ROC for H () hastobe —1< Re{s} <2 . Therefore
1 5

h(t)-—3e u(4)—%e*u0)

(ii).If the system is causal, the ROC forH(s) has to be Re{s}>2 .Therefore
1 1
h(t)=Ze*u(t)-=eu(t)-
(t)=5eu()-5eu(t)

(iii)If the system is neither stable nor causal ,the ROC for H (S) has to be Refs} <-1.
Therefore ,
MQ:—%&M@U+%€M@ﬂ
9.32. If X(t):emproduces y(t)z(l,e)ea,thenH (2)=(1/6)- Also, by taking the Laplace transform of both sides

of the given differential equation we get
s+b(s+4) .

()= sra)s12)
Since H(2)=1/6 We may deduce that b=1 .Therefore

B 2(s+2) 2
M) Sera)s+2) 5(5+9)

9.33.Since x(t)=e " =e"u(t)+e'u(-t),
()ot-t__ 2
Cs+l s-1 (s+1)(s-1)

We are also given that

s+1
H(s)=
(s) S?+25+2

—1<Re{s} <1’

Since the poles of H (s)are at—1+ j, and since h(t) is causal we may conclude that the ROC of
H(s) is Re{s}>-1.Now

Y(s):H(s)X(s):( -2

s*+25+2)(s-1)
The ROC of Y (s)will be the intersection of the ROCs of x (s)and H(s).Thisis —1<me{s}<1.
We may obtain the following partial fraction expansion for Y (s):

2/5 2s/5+6/5.

Y(s)=—"—+

s—1 s§*+25+2
We may rewrite this as

Y(s)——z—/5+g s+l 1,4 ! .
©s=1 05| (s+1) +1] 5| (s+1) +1

Nothing that the ROC of Y (S)is ~1<we{s} <1and using Table9.2,we obtain
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y(t):%e‘u(—t)Jr%e“costu(t)+§e‘tsintu(t)
9.34.We know that
(1) =0 1) T X, ()= e 5} >0
Therefore, 0
x (t) as the input is

Yi(s)=H(s)X(s)

has a pole at S=0.Now ,the Laplace transform of the output y1(t)of the system with

Since in clue 2, Yl(s)is given to be absolutely integrable +H(s) must have a zero at S =0which

cancels out the pole of X, (s)ats=0.
We also know that

xz(t):tu(t)@xz(s)zsiz,me{s}>o

Therefore , x, (S)has two poles at S =0.Now ,the Laplace transform of the output Y, (t) of the system

with x,(t) astheinputis

Y, (S) =H (s) X, (S)

Since in clue 3, Y, (s) is given to be not absolutely integrable ,H(S)does not have two zeros at

s = 0.Therefore ,we conclude that | (s) has exactly one zeroat S=0.

From clue 4 we know that the signal
p(t):ddrlgt)ﬁ-Zdhd—Et)ﬁ-Zh(t)

is finite duration .Taking the Laplace transform of both sides of the above equation ,we get
P(s)=sH(s)+2sH(s)+2H(s)-
Therefore,
H(s) P(s)

T 12512
Since p(t)is of finite duration, we know thatp(s) will have no poles in the finite s-plane .

Therefore, H(s) is of the form

Aﬁ(s—zi)
H(s)= 5;125+2 ’

where z,,i=12,...., N represent the zeros of P(s)-Here, A is some constant.

From clue 5 we know that the denominator polynomial of H (s) has to have a degree which is

exactly one greater than the degree of the numerator polynomial .Therefore,

H(s): A(S_Sl) :
s7+25+2

Since we already know that H (s) hasazeroat S=0 ,we may rewrite thisas (s)= As
§?+25+2

From clue 1 we know that , 4)is 0.2 .From this ,we may easily show that A=1 .Therefore,

H(s)

B s
s?+2s+2

Since the poles of H(s) are at -1+ j and since h(t) is causal and stable ,the ROC of H(s) is

Re{s}>-1.
9.35.(a) We may redraw the given block diagram as shown in Figure S9.35.
From the figure ,it is clear that

E:Yl(s)'
S
Therefore, f(t)=dy,(t)/dt- Similarly, e(t)=df (t),dt.Therefore, e(t)=d?y,(t)/dt*.
From the block diagram it is clear that
d?y, (t) dy,(t .
y()=e()- £(0)-o ()= 24 Mgy )
Therefore
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Y (5)=5,(5) 3%, (5) 6%, (5)
Now ,let us determine the relationship between yl(t)and X(t).This may be done by concentrating on the lower

half of the above figure .We redraw this in Figure S9.35.
From Example 9.30,it is clear that i (t) and x(t) must be related by the following differential equation :
d’n(t) () () =x()"

dt’ 2 dt T

Therefore,
X(s) .

YI(S):52+25+1
Using this in conjunction with eq (S9.35-1), we get

Y(5) =S58 x(s)’

T sP+2s+1

Taking the inverse Laplace transform ,we obtain
d?y(t) _dy(t) d?x(t) dx(t)—sx(t)'

i a YO e
2 1
(e) 5 R - 1 { _l
7 ——®—>0 I
L4 | ? 1/s I@*V(t)
X(t s LA s X(t 1/s > -2 B}

3 | -2 | P system @
T system (D

%@f Figure $9.36

X (1

Figure S9.37

(b) The two poles of the system are at -1.Since the system is causal; the ROC must be to
the right of ~ s= - 1. Therefore, the ROC must include the j -axis. Hence, the system

is stable.
9.36. (a) We know that Y,(s) and Y (s)are related by

Y () =(25° +45-6) Y,(s)-
taking the inverse Laplace transform, we get

oA |, dn()
y(t)=2 e +4 pm 6y, ().

(b) Since Y,(S)= FS)/s, F O = dyét(t)_
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(c) Since F(s)= E(9)/s.e(t) :% _ dzdsilz(t)_
(d) From part (a), y(t)=2e(t)+4f (t)—6y,(t).
(e) The extended block diagram is as shown in Figure S9.36.
(f) The block diagram is as shown in Figure S9.36.
(9) The block diagram is as shown in Figure S9.36.
The three subsystems may be connected in parallel as show in the figure above to
obtain the overall system.
9.37. The block diagrams are shown in Figure S9.37.
9.38 (a) We may rewrite H(S) as

1 1 1 1
H(s) :[S_Jrl][s_nLl][s_%Jr%][s_%_Lf]

H(s) clearly may be treated as the cascade combination of four first order subsystems.

consider one of there subsystems with the system function
Hl(s) =[ 1
s—3- 1
the block diagram for this is as show in Figure S9.38.Clearly, it contains multiplications
with coefficients that are not real.
(b) We may write H(s) as
H(s)=j__1 L oM (s)H,(s).
e llg o gl HOH)
the block diagram for H (S) may be constructed as a cascade of the block diagrams of

H,(s) and () asshow in Figure S9.38.

xt) — us @ (1)
A

1/s

Figure S9.38
(c) We may rewrite H(s) as

HS:} s+3 1. 1-s _
®) 3[sz+25+1]+3[sz—s+1] H3(8) +H. ()

The block diagram for H(s) may be constructed as a parallel combination of the block
Diagrams of H,(s) and H,(s).as show in Figure S9.38.

9.39. (a) For X, (t), the unilateral and bilateral Laplace transforms are identical
1
X, (s)=x%,(s) = ,
() =x(8) =5
(b) Here, using Table9.2 and time shifting property we get
X,(s) =2 Re{s}> -3
S+2
The unilateral Laplace transform is

Re{s}> 2.
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X,(s)=e" i,ﬂ%e{s}> -3
s+3
(c) We have

GO xa - t 1

(5+2)(5+3) Lywiron
Taking the inverse unilateral transform, we obtain

r(t) =e*u(t) —e**u(t).
clearly, r(t) = g(t) fort=0".
9.40. Taking the inverse unilateral transform of both sides of the given differential equation, we
get
sy(s)~s?y(07) ~sy'(07) — y"(07) +65”y(s) — 6sy(0")
—6Yy(07) +11sy(s) —11y(07) + 6y(S) = X(S)
(S9.40-1)
(a) For the zero state response, assume that all the initial conditions are zero. Furthermore,
Form the given x(t) we may determine
‘Re{s}> 4.

1
©=a
Form eq.(S9.40-1), we get
y(s)[s® +6s +11s + 6] = 1

s+4

Therefore,
1

T (5+4)(s° + 657 +115+ 6)
taking the inverse unilateral Laplace transform of the partial fraction expansion of the
above equation, we get

y(t) = %E"u(t) —%e""u(t) +%e’2‘u(t) —%e’au(t)

y(s)

(b) For the zero-input response, we assume that X(s)=0 .Assuming that the initial conditions are as given, we
obtain from (59.40-1)

s?+55+6 1
y(s)= =

$*+6s2 +11s+46 s+1

Taking the inverse unilateral Laplace transform of the above equation, we get

y(t)=eu(t)
(c) the total response is the sum of the zero-state and aero-input responses.
— Z —t _1 —4t 1 -2t _l -3t
y(t) = 6e u(t) 6e u(t) + 2e u(t) 2e u(t)

9.41. let us first find the Laplace transform of the signal y(t) = x(-t) .We have
Y(s)= [ x(-teat

= [x(etdt
=X(-s)
(@) Since X(t) = x(-t) for an even signal, we can conclude that LT{x(t)}=LT{x(-t)} therefore,
X(s)=X(-s).
(b) Since  X(t) = —x(—t) for an odd signal , we can conclude that LT{X(t)}=—-LT{X(-t)} there,
(b) First of all note that for a signal to be even, it must be either two-sided or finite duration.
therefore, if has poles, the ROC must be a strip in the s-plane.
(c) Form plot (a),we get
X(s) =L.
(s+1(s-2)
Therefore,
N P ——
(s+1)(s-1)
Therefore, x(t) is not even (in fact it is odd).
For plot (b), we note that the ROC cannot be chosen to correspond to a two-sided function x(t).therefore,
this signal is not even.
Form plot (c), we get

X(s)

—X(8).

CAG-)s+)  AGE+D)
T (s+)(s-1) -1

Therefore,
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A(s® +1)
s2-1 X(s)

Therefore, x(t) is even provided the ROC is chosen to be —1<
For plot (d), we note that the ROC cannot be chosen to correspond to a two-sided function x(t). Therefore, this
signal is not even.

9.42. (a) form table 9.2 we know that Laplace transform of t°u(t) is 1/s® with the ROC
Re{s} > 0 .therefore, the given statement is false.

(b) We know that the Laplace transform of a signal x(t) is the same as the Fourier transform of the signal
X(t)e™ .the ROC is given by the range of o for which this Fourier transform exists.

X(=s) =

Now, if x(t)= etzu(t), the we note that as t — oo ,the signal x(t) becomes unbounded. Therefore, for the
Fourier transform of of e *X(t) to exist, we need to find a range of & which ensure that e *x(t) is
boundedas t — co. Clearly, this is not possible. Therefore , the given statement is true.

(c) this statement is true. Consider the signal X(t) = €' . Then

+00

gtli®o=s)

X(s) = J'je Jostg=stgj — .

jo, —s
this integral dose not converge for any vale of s.
(d) this statement is false. Consider the signal x(t) = e’®'u(t) . Then

gtioo=s)

+00

X(s) = J':ej”’°te’5tdt =

Jw, —s®
this integral converges for any value of s>0.
(e) this statement is false. Consider the signal X(t) = |t| .Then

X(s)= [ tedt+ [ ~teat

both integrals on the right-hand side converge for any value of s>0.
9.43. we are given that h(t) is causal and stable .therefore ,all poles are in the left half of the s-plane .

(&) note that
9 =$<;>G(s) —SH(s)
now, G(s) has the same poles as H(s) and hence the ROC for G(s) remains the same therefore,
g(t) is also guaranteed to be causal and stable.

(b) note that

rt) = J‘; h(r)dz <> R(s) = @

note that R(s) dose not have a pole at s=0 only if H(s) has a zero at s=0. therefore, we cannot guarantee that r(t)

is always causal and unstable.
9.44. (a) Note that fm
St-nT)«<<>e™" | Alls. r drlt
Therefore, t2rlT
< —n —sn 1 .
X(S) = Zoe Te T= 1— e—T(1+s) -1 O
- 1 2rlt Re
T Arlt
Figure S9.44

In order to determine the ROC, let us first find the poles of X(s) . Clearly , the poles occur when
This implies that the poles satisfy the following equation :
e ") —ei?T K —04+1,42, .-,
Taking the logarithm of both_side of the above equation and simplifying , we get
s, =—1+2% k=04142,---.
Therefore , the poles all lie on a vertical line (parallel to the jw-axis) passing though
s =-1. Since the signal is right-sided , the ROC is Re{s}>-1.
(c) The pole-zero poles is as shown in Figure S9.44 .
(c) The magnitude of the Fourier transform X( jw)is given by the product of the reciprocal of the
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lengths of the vectors from the poles to the point jw .The phase of X( jw) is given by the negative

of the sum of the angles of these vectors . Clearly from the pole-zero plot above it is clear that both
the magnitude and phase have to vary periodically with a period of 2x/T.
9.45 . (a) Taking the Laplace transform of the signal x(t) , we get
Y(s)= 22418 — s
T 52 sl T (s-2)(s1)
The ROC _1< Re{s} <2 Also , note that since x(t) is a left-sided signal , the ROC
for X(s) is Re{s}<2
Now ,

H(s):is)z S

X(s)  (s+2)(s+1)
We know that the ROC of Y(s) has to be the intersection of the ROCs of X(s) and
H(s) . This leads us to conclude that the ROC of H(s) is Re{s} >—1.
(b) The partial fraction expansion of H(s) is

Therefore,
h(t) = 2e™u(t) —e'u(t).
(c) €% isan Eigen function of the LTI system . Therefore ,
y) =H@)e" =3¢
9.46 . Since y(t) is real , the third input must be of the form e®" Since x(t) is of the form
5(t)+e* +e¥t and the output is y(t) = —6eu(t)+4e* cos(3t) + Le*sin(3t) , We may conclude that
H(4£3j)=5+j2
Letustry h(t)= 5(t)-6eu(t) then
H(s)=s
We may easily show that H(4£3j)=4+jL Therefore , H(s) as given above is consistent with the
given information .
9.47 . (a) Taking the Laplace transform of y(t) , we obtain
Y(s)=+ Re (s} >-2

X (S) = :i((ss)) = (s—ls)J(r;rZ)

Therefore ,

The pole-zero diagram for X(s) is as shown in Figure S9.47 . Now , the ROC of H(s) is ‘Re{s} >-1.

We know that ROC of Y(s) is at lest the intersection of the ROCs of X(s) and H(s) . Note that the ROC
can be larger if some poles are canceled out by zeros at the same location . In this case , we can choose

the ROC of X(s) to be either -2< Re{s} <1 or Re{s}>1 . Inboth cases , we get the same ROC of

Y(s) because the poles at s = -1 and s =1 in H(s) and X(s) , respective are canceled out by zeros. The
partial fraction expansion of X(s) is

Taking the ROC of X(s) to be -2<%efs} <1, we get

X(t) =—2e'u(-t)+ie *u(-t.

( a Im Im
| o
X X R; < X Q{g:
2 -l J 1 Figure S.9.47 1 ‘ !
Taking the ROC of X(s) to be SRG{SI > 1, we get

x(t) =2e'u(-t)+ie*u(t)
(b) Since it is given that x(t) is absolutely integrable , we can conclude that the ROC of X(s) must
include the jw-axis. Therefore, the first choice of x(t) given above is the one we want.
(c) We need to first find a H(s) such that H(s)Y(s)=X(s). Clearly,
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H(s) =40 = 4.

The pole-zero plot for H(s) is as shown in Figure S9.47. Since h(t) is given to be stable, the ROC of
H(s) has to be . The partial fraction expansion of H(s) is

H(s)=1+4.
Therefore,
h(t) = 5(t) — 26 'u(-t).
Also, Y(s) has the ROC . Therefore, X(s) must have the ROC —2 < SRe{S} <1 (the intersection
of the ROCs of Y(s) and H(s) . From this we get (as shown in part (a))
X(t) =—2e'u(-t)+ie*u(t).
Verification: Now,

Im
h(t)*y(t) =[ 5(t)—2e "u(t) [*[ e *u(t) | T

AVA
7%

»
»

_ a2t © 27 t-r
=e u(t)—2jo e e "u(r—t)dr 1 Y Re
For t>0, the integral in the above equation is
etJ' e¥dr=1e™.
t
For t<0, the integral in the above equation is
el J'Ow e¥dr=1e".

Figure S.9.48

Therefore,
h(t) * y(t) =—2e'u(-t) +ie?u(t) = x(t).

9.48. (a) H,(s)=1/H(s)

(b) Form the above relationship it is clear that the poles of the inverse system will be the zeros of
original system. Also, the zeros of the inverse system will be the poles of the original system.

Therefore, the pole-zero plot for H, (S) is as sketched in Figure S9.48.

9.49. If a system is causal and stable, then the poles of its transfer function must all be in the left half of the
s-plane. This is because the ROC of a causal system is to the right of the right-most pole. For the ROC
to contain the jw-axis, the right-more pole must be in the left-half of the s-plane.

Now, if the inverse system is also causal and stable, then its poles must also all lie in the left half
of the s-plane. But we know that the poles of the inverse system are the zeros of the original system.
Therefore, the zeros of the original system must also lie in the left-half of the s-plane.

9.50. (a) False. Counter-example:

(b) True. If the system function has more poles than zeros, then h(t) does not have an impulse at t=0.
Since we know that h(t) is the derivative of the step response, we may conclude that the step response
has no discontinuities at t=0.

I
(c) False . Causality plays no part in the argument of part (b) X " 0
(d) False . Counter-example : H(s)= (s -1)/(s+2) , R(e) > -2.
-1 \l 3 ®e
X 0
Figure S9.51

9.51 . Since h(t) is real , its poles and zeros must occur in complex conjugate pairs . Theretore, the Known
poles and zeros of H(s) are as shown in Figure S9.51 . Since H(S) has exactly 2 zeros at infinity , H(s)
has at least two more unknown finite poles. In case H(s) has more than 4 poles , then it will have a zero
at some location for every additional pole . Furthermore , since h(t) is causal and stable, all poles of H(s)
must lie in the left half of the s-plane and the ROC must include the jw-axis .

(@) True. Consider
g(t) = h(t) e <= G(t) = H(s+3).
The ROC of G(s) will be. the ROC of H(s) shifted by 3 to the left . Clearly this ROC will still
include the jw-axis. Therefore , g(t) has to be stable .
(b) Insufficient information. As mentioned earlier, H(s) has some unknown poles . So we do not know
which the rightmost pole is in H(s) . Therefore, we cannot determine what its exact ROC is .
(c) True, Since H(s) is rational, H(s) may be expressed as a ratio of two polynomials in s. Furthermore,
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since h(t) is real, the coefficients of these polynomials will ba real . Now, H(S) = %(3 = &(S;)j.

Here, P(s) and Q(s) are polynomial in s. The differential equation relating x(t) and y(t) is
obtained by taking the inverse Laplace transform of Y(s)Q(s)=X(s)P(s).Clearly, this differential
equation has to have only real coefficients.

(d) False. We are given that H(s) has 2 zeros at s = oo, Therefore, lim_, H(s)=0.

(e) True. See the reasoning at the beginning of the problem.
(f) Insufficient information. H(s) may have other zeros. See reasoning at the beginning of the problem.

(g) False. We know thate™ sin (t) =(1/2] )e(3”)t -(1/2j) e Bothe® ' ande® !
are Eigen functions of the LTI system. Therefore, the response of the system to these exponentials
is H(s+j)e® " and H(s— j)e® ", respectively . Since H(s) has
zerosat 3+ j, we know that the output of the system to the two exponentials has to be zero. Hence,
the response of the system to €* sin(t) has to be zero.
9.52. (a) Consider the signal y(t) = x(t-t, ). Now,

Y(s)= f X(t—t,)e™
Replacing t-t, by 7, we get
Y(s) = fi x(r)e"*d ¢

—g f x(r)e ~dr

=e"*X(s)

This obvious converges when X(s) converges because € *° has no poles. Therefore, the ROC of
Y(s) is the same as the ROC of X(s).

(b) Consider the signal y(t) =€*°x(t) . Now,
Y(s)= j“; x(z)e*'edt

= [ x(@)e e =rdt
=X(s-5,)
If X(s) converges in the range o<Re{s}<b, then ,_5) converges in the range
a+S, <S<b+s,. Thisis the ROC of Y(s).
(c) Consider the signal y(t)=x(a t). Now,
Y(s)=| x(at)e*dt
Replacing at by 7 and assuming that a >1, we get
Y(s)=(1/a) jz x(atle*"¥dz

=(1/a)X(s/a)
If a<0, then
Y(s)=—(1/ a)f x(at)e*"Vdr
=—(1/a)X(s/a)
Therefore,

Y(8) =4 X()

g
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Chapter 10 Answers

10.1 (a)The given summation may be written as
1

Z 1(1 ryne-we DY replacing z with re™ . If r<% then Erl >1
And the function within the summation grows towards infinity with increasing n.. Also , the
summation dose not converge.

But if -1 ,then the summation converges.
2

(b) The given summation may be written as

3 2( r)ne-i , by replacing z with re’™. If r>% ,then  2r>1
n—1

And the function within the summation grows towards infinity with increasing n ,. Also ,
the summation dose not converge.

. 1 .
Butifr< E , then the summation converges.

: . +( r) jwn : : jw
( ¢ )The summation may be written as Zfe . by replacing z with re™. If
n=0

r>1, then the

function within the summation grows towards infinity with increasing n ,. Also , the
summation dose not converge.

But if r< 1, then the summation converges

(@) The summation may be written as Z( r )" cos(zn/ A)e ™ + Z( 1" cos(zn/ 4)e M

n=—o0

by replacing z with re!. The first summation converges for r>1. The second summation
2

converge for r>2. Therefore, the sum of these
two summations converges for 1/2<r<2 .
10.2 Using eq.910.3).

X(2)= Z( )'uln-3Jz" = Z( o)z

S n —n S y 1
—[E]Z(—) [125]1 : 4>
5
10.18. (a) using the analysis of example10.18,we may show that
-1 -2
H@Z)= 1—262 +821
1-27272+ —
3 9z

Since h(z)=y(z)/x(z), we may write
Y(Z)[l—%Z’l+%Z’2] — X(2)[L-62 82 7]
Taking the inverse z-transform we obtain
y[n]—%y[n—l]Jr%[n—Z]: X[n]—6x[n—1] +8x[n—2]
(b) H (2) has only two poles, these are both at z=1/3. Since the system is causal, the ROC of H (Z) will
be the form |Z| >1/3. Since the ROC includes the unit circle, the system is Stable.
10.19. (a) The unilateral z-transform is

X(Z) = Z( Y'u[n+5]z™"
Ik

(b) The unilateral z-transform is
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x(2)= Y (o +3]+ oln] + 2°[-n])z "

(0+o[n]+ofn)z™"

Il
M

o

El

All z
The unilateral z-transform is

KD)=()"z"

1 n_-n
_HZ:;(E z
_ 1

-y
l—(ij ™t
2

10.20.Applying the unilateral z-transform to given difference equation, we have
27y(2)+y[-1+2y(2) = y(2).
(@) For the zero-input response, assume that x[n]=0. Since we are given that y[-1]=2,
- -1
Y@ +y()+2y()) = 0= y(2) = ——
1+(§)z‘1

1
7|>=
2

Taking the inverse unilateral z-transform,
Y= 2y )
(b) For the zero-state response set y[-1]=0. Also, we have

K@) = 1) ) = —— J2]> .

1—1 z*
2

Therefore,

TG

2+z

y(2)=(
1—£z
4

We use partial fraction expansion followed by the inverse unilateral z-transform to obtain
1,1, 1.1,
y[n]—g(—g) mIn]+ 6( 4) u[n].
(c) The total response is the sum of the zero-input response. This is
2 Lo Ldy
y[n]——g(—a) mIn]+ 6(4) un].
10.21.the pole —zero plots are all shown in figure S10.21.
(a) For x[n]=o[n+5], x(z) =z°, all .
The Fourier transform exists because the ROC includes the unit circle.
(b) Forx[n]=c[n-5],
X (2)=2"°, all z expect 0.
The Fourier transform exists because the ROC includes the unit circle.
(c) Forx[n]=(=1)"u[n],
X(2)=3 x[n)z"

N
n=0
=1/(1+z7),|7]>1
The Fourier transform does not exist because the ROC does not include the unit circle

(d) Forx[n]= (%)”*ﬂz[n +3],

0

X(z)= Y x[njz"

N=—o0
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n=-3
=1
— (7)n—22—n+3
26
47° z\>1
1
-y 2

_1 n-2 ,n+2
?) ’
22 I(1+32),|2|<1/3
3z
(1+(1/3) D)
The Fourier transform does not exist because the ROC does not include the unit circle.
(H) For x[n]=@/4)" y[-n+3],

x(z) = Z x[n]z™"

—00

wayz”

7| <1/3

Mw I\

n=

i @4z

2(1/4)n3 nS

n=0

=(1/64)27°/(1-42),|z|<1/4
=(1/16)z7* [(1-(1/4)z7),|z7| <1/ 4
The Fourier transform does not exist because the ROC includes the unit circle.
(9) Consider x (z) =2"[-n].

x (@)=Y xnjz"

n=-

- @7
->@"7

=1/(1-(1/2)2),|z|] < 2
=-27"/(1-227),]z|< 2
Consider x,[n]=(1/4)" #[n—-1].

)

X, (2) = Z x,[n]z™"

|

(142"

M I T

(1/ 4)n+1 an—l

n=l

=(z"14)LIA- @/ 4z )] |2 >1/4

&

The z-transform of the overall sequence x [n]= X, [n]+ x,[n] is
2zt z7/4

x(z2)=— -+ =
1-2z7) 1-@1/4)z

The Fourier transform exist because the ROC include the unit circle.

(1/4)<|z|<2
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(9) Consider x [n]= (1/3)"? x[n—2].

x(z)= > x{n]z™"

n:

@)z

M- 2D

@/3)"z "

o

n=

N

=77 [LIA-1/3)zM)],|z|>1/3

The Fourier transform exists because the ROC includes the unit circle.
A'M M M

g (c) a4 d) 1,
' (a)/C/ ) r 0 / R .
\_ | \/ R,

IM

©) 2" ordu3u, () IM 3rd°rdUka(g) I ()

5"ordu3y,

Figure  S10.21
10.22. (a) Using the z-transform analysis equation,
X(2)=@W2)*2* + (@222 +(/2)°2* +(1/2) ' '+ (1/2)°2° + 1/ 2)'z "
+1/22 277+ U2+ @12 !
This may be express as
- 1/2°2°
X(2)=@/2)* 2 [———=—].
@)= 7= 5]
This has four zero at z=0 and 8 more zero distributed on a circle of radius 1/2. The ROC is the entire z
plane. (Although form an inspection of expression for X(z) it seems like these is a pole at 1/2 which cancels
with this pole.) Since the ROC includes the unit circle ,the Fourier transform exists.
(b) Consider the sequence
x,[n]=@/2)"u[n]+2"u[-n-1].
Now,
n
(1/ 2) U[n] %,‘Z‘>(l/2)
1-(1/2)z
And
1

o z
(2)"u[-n-1] .

|z|<2.
Therefore,

X(2) = —— L

12zt 1-27°
Note that x [n]=n x,[Nn]. Therefore,
d 1/2)z" 2z
X(2)=—2, %(2) == (1—( W ;)zl)2 a2y
The ROC is (1/2)<|Z| <2.Therefore, the Fourier transform exists.
(c) Write x [n] as
n(@/2)"u[n] —n2"u[-n—1] = nx,[n]—nx,[n]

(1/2)<|z|<2.
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Where

z
x[n]=@/2)"u[n] _ — X,(2) = 2|>1/2

1t |
1-(1/2)zY
And
z
%[N=@"[-n-1] =" x,(2) =—$,\z\ <2
Using the differentiation property, we get

_ . d d W2 27t
X(@) =2 %@+ X == o T amary

The ROC is (1/2)<|Z| < 2. Therefore, the Fourier transform exists.

(d) The sequence may be written as
ej[(27rn/6)+(7r/4)]

X[n]= 4n{—2 J[-n-1].

efjiz/4 1
2 1_de 127651 '|
4 ej[(2/rn/6)+(zr/4)]u[_n 1] Z e

—p 2 1_4ej2ﬂ/6271 ’|

Now

7|<4

jrla 1

7|<4
And
7 e—jzz/4 l

4n e—j[(27rn/6)+(7r/4)]u[_n _1] = _ ,|
- 2 1-4e it

7|<4

Therefore,

Cin jrl4
X@= e 1 4 & L 17<4
2 1-4e127 671 2 1-4ei?"67?

The ROC is |Z| < 4 . Therefore, the Fourier transform exists.

10.23 (i) The partial fraction of the given Xx(z) is

_1 3
X(z)= 12 + f
1-=z* :L+§z’1

Since the ROC is | L.
2

x[n]= —%(%)n u[n]+g(%1]n u[n]:

Performing long-division in order to get a right-sided sequence. we obtain
X(2)=1-z" 2z -1z Tpt Lo

—z7t-—7 +
4 4 16 16
This may be rewritten as
X (z) :§[1—1 et 1y +...]—1[1+lz‘1+lz‘2 PP +..]
2 2 4 8 2 2 4 8

Therefore.

x[n]= —%[%)n u [n]+g(%l]n uln]-

(ii) The partial fraction of the given X (z) is
1 3
2

X (z) = 12 +—2
1-=z7% 1+=277
2 2

Since the ROC is 7 <2
2

x[n]= %(%}n u[-n —1]—2[_71Jn u[-n-1]-
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Performing long-division in order to get a left-sided sequence. we obtain
X (z)=4z-47°+167° 162" +642° +...

This may be rewritten as
X (2) :2[22—422 +82° 167" +....]+%[22+4z2 +82° +162° +...]

Therefore.
x[n]= %(%)n u[-n-1] —g[%l)n u[-n-1]

(iii) . The partial fraction of the given X(z) is

X (2)=-2+—-2

Since the ROC is oo L
2

x[n] :—25[n]+g(%)n u[n]

Performing long-division in order to get a right-sided sequence. we obtain

This may be rewritten as
3 1 1
X(2)==2+=[l+=zr+=z2.]
( ) 2[ 2 4 1

Therefore.
x[n]:—25[n]+%(%l) u[n]

(iv) The partial fraction of the given Xx(z) is

a

Since the ROC is | 1L
2

N | w

X(z)=—-2+

21

N

~ |

x[n]:-za[n]-g@ u[-n-1]
Performing long-division in order to get a left-sided sequence. we obtain
X (z)=-2-3z-62?-127°-247" - ...

This may be rewritten as
X (z):—2—§[22+4z2 +82°+162° +...]-

Therefore.
3(1Y
x[n]——2§[n]—5[§j u[-n-1]
(v) The partial fraction of the given Xx(z) is
1 n 1 n+l .
x[n]_2n(5] u[n]—n(ij u[n+1]
(vi) We may similarly show that in this case,
1 n 1 n+l .
x[n]_—Zn[E) u[—n—l]+n(§] u[-n-2]
10.24 (a) We maywritex[z] as

Therefore
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1-z7

If x[n] is absolutely summable, then the ROC of X (z) has to include the unit circle

X(z)=

Therefore, the ROC is |z| > 1 1t follow that
2

= )Pln]’
(b) Carrying out long division on X (z) ,we get
2,1 5 1, .
X(z)=1-z +EZ _ZZ +....
Using the analysis equation (10.3),we get
x[n] = S[n]- (—%)”‘1u[n -1
(c) We may write X (z) as

3zt 3z
B 1 1
1-=7' =277 (-Zzha+>7t
1 ( 2 ¢ 2 )

Since X[n] is absolute summable, the ROC must be K > 1 in order to include the unit
2
circle. It follow that
1 1
X[z] = 4(§)ZU[n] - 4(—Z)ZU[n]
10.25. (a) The partial fraction equation of ;) is

1 2
X[z]= 1. 1,3
1-=z7
2

Since X[n] is absolute summable, the ROC must be |Z|>1 in order to include the unit
circle. It follow that
A0n]=-C)*uln] + 2u[n]-
(b) x(z) may be rewritten as
oz
-y

Using partialfraction expansion, we may rewrite this as

X[z]=

2y
1 z1

w1 2
X[z]=2z [E—E]fzz [

2 2

If x[n] is right-side, then the ROC for this signal is |Z| > 1.Using this fact, we may

Find the inverse z-transform of the term within square bracket above to be yyp] =—(%)”u[n]+u[n]-
Note that  X[z]=2zX[z].Therefore, x[n]=2y[n—1]. This gives
x[n] = —2(%)”*lu[n +1]+2u[n+1]
Noting that X[—1] = 0.we may rewrite this as
A =G uln] + 4[]

This is the answer that we obtainly in part (a).
10.26 (a) Form part (b) of the previous problem,
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.z
@-2)@-1
(b) Form part (b) of the previous problem,

z z ..
X[z]:22[——1+—l]
7-= -
2

(c) If X[n] is left-side, then the ROC for this signal is |Z|<l.Using this fact, we may
2

JFind the inverse z-transform of the term within square bracket above to be
yin] = (%)"u[—n—l]—u[—n—l]' Note that  X[z] =2zX[z].Therefore, X[n]=2y[n—1]. This gives

X[z]=

x[n] = 2(%)””u[—n —2]-2u[-n-2]-
10.27 We perform long-division on X (z) so as to obtain a right-seder sequence. This gives us
X(2) =22 +47% +52+...

Therefore ,comparing this with eq.(10.3) we get
x(-3) =1 x(-2)=4 x(-) =5

And Xx(n)=0for n<-3
10.28 (a) Using eq (10.3),we get
X(z)=1-0.95z° =

(b) Therefore X(z) has zeros lying on a circle of radius 0.95(as shown is Figure S10.28)and 6 poles at z=0
A

26 -0.95
6

A

S

\”
E\O/g ' Figure 51028 —2% 7 T 2z
3 3 3 3

(c) The magnitude Fourier transform is as shown in Figure S10.28

10.29 The plots are as shown in Figure S10.29

-7 _r 0 z -7 0 T ®
LY 2\ AT AANNANANANNND
0 > i Fi ,.0 w
® W3 0 T igure S10.25

10.30 From the given information, we have

X <X (2) =
1-=z7
2
And
. 1 2> 1
X,[N]«——>X,(2) = 1 3
1—52’1

Using the time shifting property, we get
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x [n+3]«2>7°%,(2)

1
lz|>3
2
Using the time reversal and properties, we get
x[-n+1«"—>z2"%(z7) l2)<3
Now, using the convolution property, we get
y[n] = x[n+3]*X,[-n +1]«2=Y (2) = 2* X, (2) X, (z7)
L gks
2
Therefore 22
Y@= 7
(—5136—52)
10.31 From Clue 1, we know that X[Nn] is real. Therefore the poles and zeros of X (z)have to occur in

conjugate pairs, Since Clue 4 tells us that X (z) has a pole at 2= Ly’ -we can conclude that X (z) must
2
have anther pole at , _ (E)e-%” Now since X (z) has
2

No more poles, we have to assume that ., has 2or less zeros. If x(z) has than 2 zeros, then x(; must
have poles at infinity, Since Clue 3 tell us that X (z) has 2 zeros at the origin, we know that x ;) must be of
the from

Az?
(2-Qe*)z-()e *)
Since X[Nn] is right-sided, the ROC must be

X(2)=

7>
3

10.32. (a) We are given that h[n]=a"u[n] and X[n]=u[n]—u[n— N]therefore
y[n]=x[n]*h[n] = i h[n—Kk]x[k] = fa”’ku[n —K]
k=—c0 k=0
Now. y[n] may be evaluated to be

0, n<0

y[nl= Zn:a"a’k, 0<n<N-1

Yaa' n>N-1
Simplifying -
0, n<0
ynl= (a"—a’l)/l—a’l, 0<n<N-1
a"(l—afn)/l—afl, n>N-1
(b)Using Table 10.2 we get

Ho= 1 [zl
l-az
And
l -N
X(2)= A All z,
1!
1-7
Therefore
Y(2)=X(2)H(2)= 1 7™

@-z90-az) @-z)a-az")’
The ROC is |z|>|al, Consider
P(2)= 1
a-z"a-az")
With ROC |z|>]a|, The partial fraction expansion of P(z) is
P(2= ye-=o yYa-a)
1—Z’1 1—azf1 '
Therefore,
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P[n]= 1
17au[n]+ “a ——a u[n]

Now, note that
Y@=P@)y- ;.
Therefore,

yIn] = pIn]- p[n—N]=ﬁ{u[n]—u[n— N}

1 ; o . .
T a_l{a uln]-g" ufn- N]}, This may be written as

0, n<0
y[n]= (a"—a’l)/l—a’l, 0<n<N-1
a"(lfa’")/lfafl, n>N-1
This is the same as the result of part(a).

10.33. (a) Taking the z-transform of both sides of the give difference equation and simplifying,
We get

Y(2) _ 1

X 1—%2 +%z’2

The poles of H(z) are at (1/4) ij(\/§/4). Since h[n] is causal, the ROC has to be

|21l (/4 + i(N3/4) = /2>

(b) We have

H(z) =

Therefore,
1
Y(z)=H(2)X(2)= .
W-2z9-3z"'+379
The ROC of Y(z) will be the intersection of the ROCs of X(z) and H(z).This implies that the ROC of Y(z2)
iS |z|>1/2.The partial fraction expansion of Y(z) is

-1

1 z7/2

Y(Z)ilil 71+l 1 ]+1 2"
22 Z 42

Y[n]:[%) u[n]+%(%j sin(%n]u[n].
10.34.(a) Taking the z-transform If both sides of the give difference equation and simplifying, we get

H@-YO 2"
X(Z) 1—271—272

The poles of H(z) are at z=(1/ 2)i(x/§/2).H(Z) has a zero at z=0.The pole-zero plot for H(z) is as

shown in Figure S10.34.since h[n] is causal, ROC for H(z) has to be |z|>(1/2)+(\/§/2),
(b) The partial fraction expansion of H(z) is

M- VB U / \
17[1+2\/§]271 lf[l—g/ngA ' L
Therefore, " 1-5 &J 1+2
1+/5 1-5

2
h[n]=- u[n]+ ——— |u[n].
ﬁ( J I( 2 j Figure S10.34

(c). Now assuming that the ROC is (B/2)-w2)dz< @2)+(<B/2), We get
h[n]_jg[1+\/—j u[-n—1]+ J_(l \/—]u[n].

10.35. Taking the z-transform of both sides of the glven difference equation and simplifying. We get
Y(2) 1 z
H@) ="~ =

X(2) 1‘%‘*’ Z—1 1_52—1_'_ Zfz'

The partial fraction expansion of H(z) is

Using Table 10.2 we get

\/

ol
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If the ROC is 1/2<|z|<2,then

hz[n]——i(;j U[”]—%(Z)"u[—n—l].

If the ROC is |z|<1/2,then

1Y .
ha[n]=§(2j u[—n—11—§(2) uf-n-1].

For each h,[n] we now need to show that if y[n]= h.[n] in the difference equation, then Xx[n]=

o[n].Consider substituting h.n] into the difference equation .This yields

g(éj u[n1]§(2)mu[nl]§[;j u[n]+2(2)nu[n]+§(;) u[n+1]—§(2)n+lu[n+1]:x[n]
Then,
x[n]=0, for n<-1,
x[—1] =2/3-2/3=0,
X[n]=0,  for n>0.
It follows that X[n]=o[n].it can similarly be h,[n] ad ) satisfy the difference equation.

10.36. Taking the z-transform of both side of the given difference equation and simplifying, we get

Yo 1 g
"OXw T D
3

L 10 - —
+Z 32 +7

The partial fraction expansion of H(z) is
Ho- 38, 38
17%27l 1-37°

Since H(z) corresponds to a stable system, the ROC has ro be (1/3)<|z|<3.Therefore,

1Y .
hin] =2(3j u[n]—g(S) u[-n—1].

10.37. (a) The block-diagram may be redrawn as show in part (a) of the figure below . This may be treated as a
cascade of the two systems shown within the dotted lines in Figure S10.37. These tow systems may be
interchanged as shown in part (b) of the figure Figure S10.37 without changing the system function of the

overall system. From the figure below, it is clear that
y[n]= x[n]+gx[n —1]—%y[n —l]+§y[n—2].

______________________________________

1 \ > > 1 : ‘/ 1
x[n] N o Nvinl

! R : - -
| Z 1l - X[ » [ yInl
1 1 1 \ 1
Pt -z z
1 ¥ | yIn-1]
i v L xIn- 69‘—-‘—! r
' 2/9 ] ! 1 -
Rttt ittt ' Figure $10.37

System | System 11 vin-1]

(b)Taking the z-transform of the above difference equation and simplifying , we get
9_ 4 9 4
~ m B 1+§ Z 1+§ z

TX@ L2 e

H(2) - 2 1 4
3l gz Wgz)A-37)
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H(z) has poles at z=1/3 and z=-2/3. Since the system is causal. The ROC has to be |z|>2/3. The ROC
includes the unit circle and hence the system is stable.

10.38.(a) g,[n]= fl[n],
(b) ez[n]: fz[n]'

(c) Using the results of part (a) and (d), we may redraw the block-diagram as shown in Figure S10.38.

X[n] o+

Py

Figure S10.38

(d) Using the approach shown in the examples in the textbook we may draw the block-diagram of
H 1(z):[1+(]/4)Z’]/[1+(1/2)Z’1] and H 2(2)2[1_22*]/[1_(]/4)2*] as shown in the dotted boxes in the

figure below. H(z) is the cascade of these two systems.
(e) Using the approach show in the examples shown in the textbook, we may draw the block-diagram of

H.@=4H,® =[5/3]/[1+(1/2)Z’ land H (2)=[-14/3)/[L-(/4)z "] @ shown in the dotted boxes in the
figure below. H(z) is the parallel combination of Ho H.,2 H.o
10.39. (a) The direct form block diagram may be drawn as shown in part(a-i) of Figure S10.39 by noting that
1

HO="5 "% . 5 _+ 1_+
32 362 "182 T3l

The cascade block-diagram is as shown in part (a-ii) of Figure S10.39.

Fan) >
Y yin] n .
7" Xl N\ g yin]

A

+
N
L]

D
” ]
N <

il
6?‘_.'_,,

4@_%1 Figure S10.39
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Part(a): A=5/3,B=11/36.C=15/54,D=1/36
Part(b): A=3/2,B=-1.C=5/4,D=-1/2
Part(b): A=2,B=-2/4.C=3/4,D=-1/8
Part(@): a =1, [ =-1/4,r=2/3,6 =-1/9
Part(d): a=1, f=-1/2,=1/20 =-1
Part(d): a=1, [ =-1/2,r=1,0 =-1/4

: H : ]|: 1 M l }
1 4 1 4 2 2 4l
1—52 l_EZ l—gz 1—52

Therefore, | (z) may be drawn as a cascade of four systems for which the coefficient multipliers are all

Note that

H®=

real.
(b)The direct form block diagram may be drawn as shown in part (b-i) of Figure S10.39 by noting that
1

H.0-

3_a 2 5_3 1 _ 4

2L *5Z

The cascade block-diagram is as shown in part(b-ii) of Figure S10.39.
Now that

H.(2)=

1 H 1 ] 1 1
) D P Sl B | DR W VT DA NV L
1 ;2 Z 1 5 Z ||1- +J4 7 ||1- J4 7
Therefore, H.(z) cannot be drawn as cascade of four systems for which the coefficient multipliers are
all real.

(c) The direct form block diagram may be drawn as shown in part(c-i) of the Figure S10.39 by noting that

H.@)- :

-1 7 -2 3 -3 1 41‘
1=27 +57 —,7 *32
The cascade block-diagram is as shown in part(c-ii) of the Figure S10.39.

Note that

hs(z)7 1_MZ4 |:1_H21H1—lzl]|:1—121]
2 2 2 2

Therefore, H1 (Z) cannot be drawn as a cascade of four systems for which the coefficient

Multipliers are all real.
10.40.The definition of the unilateral z-transform is

x(z)zgx[n] z "

@ since X[n]=0 [n-5] is zero in the range 0< n < o0 ,x(2)=0.
(b) The unilateral of Laplace transform of x[n]= ¢ [n-5]
Is

x( z)=i s [n-81= &
n=0
(c) The unilateral of Laplace transform of x[n]=(-1)"u[n] is

KD)= 3 (1) Ul " = 2]t

+zt
(d)The unilateral of Laplace transform of X[n] =@1/2)"u[n+3] is

x(2) = i(l/ 2)"u[n +3]z " .y
-S> @sz2ynz"

B 1
1—@’/2)z*
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(e)Since x[n]=(-1/3)u[-n-2] is zero in the range 0 < n < oo, x(2)=0.
() The unilateral of Laplace transform of x[n]=(1/4)"u[-n+3] is

o0

x(z) =>_ @/ "u[-n+3]z"

n=0

zi(1/4)nzfn ,A”Z
n=0

I I P
4 16 64

(9) The unilateral of Laplace transform of x[n]=2"u[-n]+(@/4)"u[n-1] is

x(z) =S 2"u[—n]+ @/ 4)"ufn —1]z "
n=0 All z,

-S> @/ayz
n=0

1
1—i z™*t
4

(h) The unilateral of Laplace transform of x[n]=(1/3)"?u[n—-2] is

x(z) =S (@/3)"2u[n—2]z" |z|>1/2,

=z72> @3"z"
n=0
2—2

17l z*
2

10.41.from the given information,
x(2) =3 @/ 2)" u[n +1]z "
"o |z|>1/2.
=@/2)> @/2)"z"
n=0
1/2
1-@1/2)z*
And

oo

x, (z)=>_@/4"u[n]z "
n=o |z| >1/a.

— S @sayz-r
o } 1
S 1—qQ@rsayzt
Using Table 10.2 and the time shift property we get

) Jz|>172.
X, (2) =
1-L,
2
And
1 >1/4.
X, (D) =——
1--77
4
(@) We have
(D)= X, (DX, () =———
(1752’1)(1712’1)

The ROC is |z|>(1/2).The partial fraction expansion of G(z) is

G(z)=z f - i
1-27% 1-=77
2 4

Using Table 10.2 and the time shift property ,we get
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aln]= 2(%)"“u[n - (%)"%[n 1]

(b) We have
1/2
QD =X X, (D) =——F——F
a-279a-57%)
The ROC of Q(2) is |z|>(1/2).The partial fraction expansion of y(z) is
1 2 1
Q(Z):E 1L, _1—121}
2 4
Therefore,

1, 1.1,
alnl= (5) u[n]_E(Z) ufn].
Clearly, g[n] # g[n] for n>0.
10.42. (a)Taking the unilateral z-transform of both sides of the given difference equation .we get
Y (2) +3z7'Y (2) +3Y[-1] = X[z].
Setting x(z) =0,we get

-3
Y(2)=——.
@) 1+3z7

The inverse unilateral z-transform gives the zero-input response
ya[n]=-3(=3)"uln] = (-3)""u[n].
Now, since it is given that X[n] = (1/2)"u[n], we have
|z|>1/2.

X(z)= :
1-=z1
2

Setting  y[-1] to be zero ,we get
Y(2)+3z27Y(2) = i
1—E 7

Therefore,
1

@a- > zH(1+3z7Y)

The partial fraction expansion of Y (z) is

1/7 6/7
Y(z)= 1 +l+3zl'
1—52’1

The inverse unilateral z-transform of both sides of the given difference equation ,we get
1 1 1
Y(2)=-=zY(@)-=y[-1]= X(2)-=z27X(2).
@)=Y @~ M= X@)-7'X(@2)

Setting X (z) =0, we get
Y(2)=0.
The inverse unilateral z-transform gives the zero-input response
Yi [n] =0.
Now , since it is given that X[n] = u[n], we have
1
X@=1— Pt

Setting y[-1] to be zero, we get

Figure S10.46

1 1 W2zt
Y(2)-2z2Y(2)=———- )
) 2 ) 1-z%+ 1-77°

Therefore,
Y(z)=

1-z7%
The inverse unilateral z-transform gives the zero-state response
Y [n]=u[n].
(c) Taking the unilateral z-transform of both sides of the given difference equation ,we get
Y(z)—%z*Y(z)—% y[-1] = X(2) —%z‘lx(z).
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Setting X (z) =0, , we get

10.46.Taking the z-transform of both sides of the difference equation relating x[n] and s[n] and simplifying, we
get

X(z) T

H(z)=—2=1-7¢"" =

@) s(z) 2

The system has an 8" order pole at z=0 and 8 zeros distributed around a circle of radius e *. This is show in

Figure S10.46. The ROC is everywhere on the z-plane except at z=0.
(b)We have

Therefore,
O &

HZ(Z):l_ 7880 78 _gta
There are two possible ROCs for H, (z) :|z|<e™ or|z|>e . If the ROC is |z|<e ™ then the ROC

dose not include the unit circle. This in turn implies that the system would be unstable and anti-causal. If the
ROC is |Z| > €% then the ROC includes the unit circle. This in turn implies that the system would be stable

and causal.
(d) We have
1
H,(z)=————-
2 ( ) 1— Z—Be—Sa
We need to choose the ROC to be |Z| >=€"“ inorder to get s stable system. Now consider

1
PO)= e

With ROC |Z| > €~“ .Taking the inverse z-transform, we get
p[n]=e**"u[n].

Hz(z)zP(zs).

From Table 10.1 we know that

Now, note that

W= | PI/Bl=en=0:8.+10....

0, otherwise
10.47. (a) From Clue 1,we have H(-2)=0.From Clue 2, we know that when

1 1
X ()=l
2
We have
1 .
Y(z)=1+ i |z|-=
1—1 z*t 4
4
Therefore,
I I
H@)-M-M \z\>1
- X(Z)_ 1_1[1 ' 4
Substituting z=-2 in the above equation and nothing that N(-2)=0,we get
a=_2.
8

(b)The response to the signal x[n]=1=1". Therefore ,
VN =HEO -5
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10.48. from the pole-zero diagram, we many write

(Z e
-B 2 2
7_ ejB}er( 1 6713;!/4j
2

( e]3ﬂ/4j(z 1e ]37!/4]
2

HZ(Z) B 1 1
Z—feJ”M 7— ]7[/4
(2 )

Where A and B are constants. now note that

Hz(z):EHl[ézej”j:EHl(—Ez)
A 2 A 2
Using the property 10.53 of the z-transform(see Table 10.1),we get

ol =2(-2] ol
We may rewrite this as

h, [n]=g[n]h[n.]
Where g[n]=(B/a)(—2/3)".Note that since both h,[n] and h,[n] are causal. We may assume that
g[n]=0 for n<0 .Therefore .

And

_B_2ymuln].
gln] = (=5
Now ,clue 3slao states that i| g[k]| = 3- Therefore .

0

B 2 kK _
2,03 73

Or
B 1 _3 = B
A1-2/3 A
Therefore ,
2.,
g[n]=(-§) ufn] .
10.49 .(a) We may write the left side of eq. (p10.49-1) as
. -n I -n
X" = le[nll(fo—) le[n]lro (r—l) (s10.49-1)

n=N, n=N, n=N, 0
Since r,>Tr,; the sequence (r,/r,) " decays with increasingn.i.e.,as n->o0
(r,/r,)™" ->0.Therefore, (r,/1,) " <(r,/1,) " forn> N, Substituting this in
eq. (s10.49-1) , we get
0 B 0 ~ ~ _Nl
D XTI = > xInd{ro" ¢ ) < ( ) ZI x[n]|r,"
n=N, n=N, n=N,
Therefore , A= (rllro)_le(rolrl) N
(b)The above inequality shows that if X(z) has the finite bound B for |z|=r, ;thenX(z) has the finite
bound (r,/r;) B for |z|=r,=1,. Thus ,X(z) converges for |z|=r,=>I,.and Property 4 of Section

10.2 follows .
(c)Consider a left-sided sequence x[n] such that
X[n]=0, n>N,

and for which
N,

Sl =S x|

n=-oo n=—ow

Then we need to show thatif r, <1, ,
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NZ N2
D Xl <P > [xIn]|r,” (s10.49-2)
N=-o0

N=—o0

When P is a positive constant .

We may write the left side of eq. (s10.49-2
N, N, N,

PN UAEDIUTOESREDY

0 nN=—ow0

| x[n]|r," (:—1)‘n (s10.49-3)
0

N=—o0 N=—o0

Since I, <r,;the sequence (r,/r,) " decays with decreasing n , i.e., as
n->c0 (r,/r,)"->0 Therefore, (r,/1,) " <(r,/1,) "? for.n< N,
.Substituting this in eq (s10.49-3) .We get

Np N, N,

D Xnlr"= |x[n]|(rorr—1)‘”3(:—1)‘”2 PRE I
0 0 n=-o0

N=-—o0 N=—o0

Therefore ,P=(r, /r,) "2 =(r /r,)
The above inequality show that if X(z) has if X(z) has the finite bound B for |z|=r, .then X[z] has

the finite bound  (r,/r;) N2 B for |z|=r,<r,.Thus ,X(z) converges for |z|= r,<r, and Property 5 of

Section 10.2 follows .
10.50.(a) From the given pole-zero plot ,we get
H(z)=Az'-a ,
l-az?
Where A is some constant .Therefore
He')=Ae™ -a

1-ae i
And
He )| * = He " )H*e <A P [&“ —3][e” —a]
l-ae™” 1-aek
Therefore

jo 1-ae ' —ae' +a’
HE )P A * === TS AR

—ae '’ —ae’ +a

This implies that |H(e ' )=|A|=constant .
(b) We get |v,|>=1+a® -2acos(®).
(c )We get
1 2 1
v, |2 :1+—2-—Cosa):—2[a2 +1+2acos@]=— |v1|2
a- a a a

10.51. (a) We know that for a real sequence x[n],x[n]=x*[n] .Let us first find the z-transform of x*[n] in

terms of X[z],the z-transform of x[n]. We have

Y@=, ynlz"=>Y x*[n]z”"

nN=—o0 nN=—o0

=[ > x[nlE") "1 =[XE@ )]
N=—o0

Now since x[n]= x*[Nn] ,we have Z{x[n]}=z{ x* [n] Jwhich in turn impels that X(z)=X" (z").

(b) If X(z) has o pole at z=z ;.then 1/X(z ;)=0.From the result of the previous part ,
1 =0.

X" (z,)

Conjugating both sides ,we get 1/ X (z;) =0. this implies that X(z) has a pole at z; .

If X(z ) has a zero at z=z ;, .then X(z ,)=0.From the result of the previous part ,

We know that

We know that
X"(z;)=0.
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Conjugating both sides ,we get X(z;):O.This implies that X(z) has a zero at z; .

(c) (1) The z-transform of given sequence is
X@2)= ;o |Z]2112
11,0 ) -1
2 2
Clearly ,X(z) has a pole at z=1/2 and a zero at z=0 and the property of part (b)holds .
(2) The z-transform of the given sequence is
X(2)= 17%21%24 7 7(1/2Z)Zz+(1/4)

X(z) has two zero at z=1/2 and z zero at z=0 and the property of part(b) still holds
(d) Now ,from part (b) of problem 10.43 we know that if x[n] and X(z) has a pole at z ;= pe’e, then

X(z) has a pole at (1/z,,)= (1/ z;) = 1/ p)e "
If x[n] is real and X(z) has a pole at z,= pe’ then from part (b) we know that X(z) must
have apoleatzy= o e /. then X(z) must have apole at (1/z;) = (1/ p)e’’.

A similar argument may be constructed for zeros .
10.52 . We have

| z|>0.

X, = i x,[n]z™"
> xl-nz”
= %’

=X,z =X,@/2) -
Using an argument similar to the one used on part (b) of problem 10.43 .we may argue that if X,(z)has a

pole (or zero) at z=z,, then X,(z) which has a pole (or zero) at z=1/z .

10.53 .Let us assume that x[n] is a sequence with z-transform X(z) which has the ROC
a<dzlkp .

(a) (1) The z-transform of the sequence y[n]=[n-n,] is

Y@= Y vz

0

= > xn-nylz™"

n=—o

Substituting m=n-n; in the above equation ,we get

Y(2)= i [mlz™® ST Tz xmlz "

= 277" X(@2).
Clearly ,Y(z) converges where X(z) converges except for the addition or deletion of z=0
because of the z™ term .Therefore ,the ROC is « <] z |< 3 .except for the possible addition of z=0 in the

ROC.
(2) The z-transformer the sequence y[n]= zyx[n] is

Y(2)= i y[n]z™"

=—00

= > zxnjz”
n=—n

0

= > ANzl z) "

=X(z/z,)
Since X(z) converges for « <| z|< /,Y(z) converges for o <|z/z,|< S, Therefore ,
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the ROC of Y(2)is |z, |a < z|<z,| 3.
(b) (1) From Problem 10.51 (a) ;we know that the z-transform of the sequence y[n]= X[n] is
Y(2)= X'[z"].The ROC of Y(2) is the same as the ROC of X(z).

(2)Suppose that the ROC of x[n] isa <| z|< £ ,From subpart (2) of part (a).the z-transform of
y[n]=z;x[n] is

Y(2)=X(z/z,)

With ROC |z, |a < 2|z, | B Therefore R =|7,|R,.

10.54. (a) Let x[n]=0 for n>0. Then ,

X(z)=)_ x[nJz"

n=-o0o

0
= > x[n]z"
=X[0]+X[-1]z+x[-2]z % +.......
Therefore
lim X (z) = X[0].

(b) Let x[n]=0 for n<0 .Then,
X@)=3 x[njz" =S x[nz"

= X[O]+X[-1]z+X[-2]z % +.......
Therefore ,

10.55. (a) From the initial value theorem ,we have
lim X(z)=x[0]non-zero and finite .
Z—>00

Therefore ,as z->«,X(z) tends to a finite non-zero value .This implies that X(z) has neither poles
zeros at infinity .
(b) A rational z-transform is made up of factors of the form 1/(z-a) and (z-b) . Note that the factor

1/(z-b) has a pole at z=a and a zero at z=« .Also note that the factor (z-b) has a zero at z=« .From the result of
part (a) ,we know that a causal sequence has no pole or zero at infinity .Therefore ,all zeros at infinity
contributed by factors of the form 1/(z-a) .Consequently ,the number of zeros in the finite z-plane must equal
the number of poles in the finite z-plane .

10.56. (a) The z-transform of X,[Nn] is

x(2)= 3 xnlz"
= S %K k]l

=—0 k=—o0

> %KLY, ln Kz "]

= 3 x[KIZ{on -kl "}

> %[

(b) Using the time shifting property (10.5.2) ,we get
%, (2) = Z{%,[n—K1}= 27X, (2),
Where X, (z) is the z-transform of X,[z].Substituting in the result of part (a) ,we get

X,(2)=X(2) Y, %[k
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(c) Nothing that the z-transform of X, [n] may be written as
X, (2) :i“xl[k]z’k ;
We may rewrite the result of p;;t (b) as
X3(2) = X (2) X,(2).
1057.(a) X,(z) is a polynomial of order N, in Z™'. X,(z) is a polynomial of order N, in
Z ™ Therefore, Y(z)=X,(z)X,(z) is a polynomial of order N,+N, in Z™ . this implies that
M=N; +N,.
(b) By nothing that y[0] is the coefficient of Z°term in Y(2). y[1] is the coefficient of Z™" termin
Y(z),and y[2] is the coefficient of Z7% termin Y(z2). we get
y[0]= x[0]x,[0],
y[11= % [0]%,[1] + x,[1]x,[0],
yI381= %,[0]%,[2]+ x,[1]X, [1] + %, [2]%,[0].
(c) we note the pattern that emerge form part (b). The k-th point in the sequence y[n] is the coefficient

of Z7™ in Y(z), The Z™ term of Y(z) is formed by the following sum :(the product of the
Z° termof X,(z) withthe Z™* termof X,(z))+(the productof the Z™* termof X,(z)

with theZ™"* term of X,(z))+( the product of the Z7> term of X,(z) with the Z ™
term of X,(2))+......+( the product of the Z™™ term of X (z) with the Z™*™ term of

X,(2))-

Therefore,
yIKI= S x[mlx,[m—k]

Mm=—c0

Since X, [m]=0 form> N, and m<0, we may rewrite this as

yIKI= 3" x[milx,[m K]
10.58 Consider a causal and stable with system function H(Zz) .Let its inverse system have the function
H.(z) .The poles of H(z) are the zeros of H,(z) and the zeros of H(z) are the polesof H.(z).
For H(z) to correspond to be a casual and stable system, all its poles must be within the unit circle.
Similarly, for H,(z) to correspond to be a casual and stable system, all its poles must be within the unit
circle. Since the poles of H,(z) are the zeros of H(Z) the previous statement implies that the zeros of

H(z) must be within the unit circle. Therefore, all poles and zeros of a minimum-phase system must be

within the unit circle.
10.59 (a) From Figure S10.59, we have

W, (2) = X(z)—gz‘lvvl(z) = w@=X@ 1

1+Kz’1
3

k __

Also K il
W, = ——7"W,(z) =-X(z) k

4 1+§z’1

Therefore,Y (z) =W, (z) +W, (z) Wwill be
1 i
Y(@) = X () ——-X(0) -4
1+-z* 1+—-z*
3 3

k -

Finally, _ﬂ_l_i
O =S~ k5
1+§z
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Since H(z) corresponds to a causal filter ,the ROC will be |z|>|k|/3.
(b) For the system to be stable, the ROC of H(z) must include the unit circle . This is possible only if
|k|/3<1.This is implies that |k| has to be less than 3.

(c) If k=1,then
H@2)= 1,
4

14—12’1
3

The response to x[n]= (2/3)" will be of the form
y[n]=x[n]H(2/3)= %(2/3)".

10.60. The unilateral z-transform of y[n]=x[n+1] is
y[z1=> ylnz"
n=0
=y(0)+ Yz +y[22 7 + ...
=X+ X2 +x3]z 7 4
=201+ {0z + {20 ... - 0]

=1y(2)-x0].
10.61.(a) The unilateral z-transform of y[n]=x[n+3] is

y(2) = i ynlz™

x[n +3]z7™"

x[n +3]z7" —x[0]z° - x[1]z* — x[2]z

Il
o

x[n]z "3 x[0]1z° - x[1]2* — x[2]z

El
I
S}

= 232 x[n]z ™™ — x[0]2° — x[1]2* — x[2]z

=7 y(2) - x[0]2° — x[1]z* - x[2]z
(b)  The unilateral z-transform of y[n]=x[n+3] is

y(@) =X yinlz "
= z x[n-3]z”"

= i x[n=3]z" +x[-1z 2 + X[-2]z + X[-3]

= i X[z "2 X127 + x[-2]2 " + X[-3]

= 2’32 X[n]z " +x[-1z% + x[-2]z 7 + X[-3]

=7 ;;(z) X127 +x[-2]z7 + X[-3]
(c) We have
ylz]= z x[K] =Z x[n-m]
k=-0 m=0

Therefore
y[z]:Zz"“;((z) +Zz"“2x[-l]z'
Z(Z) ZZ ZX[ 1z’

10.62. Note that
@ [n]= > XKIXK +n] = X[n]* x[-n]

Now, applying the convolution property, the z-transform of ¢ [y is
D, (2)=X(2)Z{{-n]}
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From the time-reversal property we know that the z-transform of x[-n] is X(1/2). Therefore,
D, (2)=X(2)X(1/2)
10.63. (a) Since the ROC is |z|<1/2, the sequence is left-sided. Using the power-series expansion ,we get

log(1-2z) = —i 2nnzn =— i - zinnzin
n=1 n=—w

Therefore ,
x[n]= Eu[-n-l].
(b) Since the ROC is |z| >1/2, rt]he sequence is right-sided. Using the power-series expansion ,we get
log—@/2)z Y =-> &2"
Therefore , "
x[n]:-z%u[n-l].

10.64. Let us define Y(z) to be

Y(z)=—z%X(z).
Then using the differentiation property of the z-transform ,we get
Y[n] =nx[n].
(a) Now,
d 2 1
Y(2)=-z—X(2)=2 =— .
dz 1-2z 1_%271

Nothing that the ROC of Y (2) is z<1/2(the same as the ROC is X(z)), we get
V= u-n-1°
Therefore ,

X[n]:%(%)nu[—n -1 =27u[—n—1]-

This is the same as the answer obtained for Problem 10.63(a).
(b) In this part,

Nothing that the ROC is |z| >1/2, (the same asthe ROC is X(z)), we get
1,1
y[nl=-=(3)"uln-1]
n-2
Therefore,
11, 2
X[n]=-=()"uln-1]=
n 2 n
This is the same as the answer obtained for Problem 10.63(b).
10.65.(a) From the given H_(s), we get
. 7|a—jw|:\/a2+a)z _
Mol oo = o =

(b) Applying the bilinear transformation we get

n uln-1]

1-z7* La+l

la=l 1l a1 17 .
Hy(2) = — 1+ = 2 2]
1-z7, a+l 1471 a-1

la+ — il

1+z a+

Therefore H,(z) hasa pole at z= (a-1) / (a+1) and a zero at z= (a-1) / (a+1).

Since a is real and positive ,
|a74|£1 and e}
a+l a+1
Therefore, the pole of  H,(z) lies inside the unit circle and the zero of 1 () lies outside the unit circle.

(¢) H,(z) may be rewritten as
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a-1+z7%(a+1)

H(2)= a+l+z'(a-1)

Therefore ,
|Hx§m”4a—1+ej%a+n|4a—l+@omu—j§ana+ﬂ
a+l+e’’(a-1) a+l+(coso- jsinw)(a-1)
This may be written as
H(jo) = \/(a—1)2+cosz o(@+1)?+2(a+1)(a-1)coso+(a+1)’sin’ )
’ \/(a+1)2 +cos’ w(a-1) +2(a+1)(a-1)cosw+(a—1)’sin’ )
_J@-1? +(a+1)?+2(a+1)(a-1cosw) 1
J@+1y +2a+1)(@a-)coso+(a-17
10.66. (a) We are give that

1-z7
Hy(2)=H.,——=
d ( ) c (1+ Z,l)
Therefore
1_e—jm ejn)/Z _e—jzaIZ

lee ko =M NZESTE

Hy(e") = H,( )=Hc(jtan§)

(b) From the given H_(s), we get

O~ g
And
Ho ()= Lm(s+ei”’})(s—e-i”’4) -
Now
A llelHg jw+ei”“‘)1 ore ™™ 1 +ZCOS](-7T/4) jorl
1

J-0?) +docos (z14)o’ +(a-1)?
Clearly, |H_ (jw)| decrease monotonically with increasing @
(c) (1) We are given that

-1

Hy@) = H. ()

Therefore,
1
Hq(2) = = ~
1-z ir 1-7 0
GG e ™)
This may be rewritten as
1 1
H,(z)= _ i i _
d( ) (1+ejrr/4)(1+eflr!/4) [1_2_1 1+eJ(ul4 ][1_ Z—l 1_e—jw/4]
l_e’jﬂ’/“ 1+efjml4

Therefore, H,(z) has exactly two pole which lie at z=—(1+e"'*) /1 —e/"'*)

And z=—(1+e7""*) /(1—e '*) . It can be easily shown that both these poles lie inside the unit circle.
(2) From the result of part (a) , we have
H, (") =H.(jtan0)=H,(j0)=1

(3) We have
1

i . 0]
[H.E") = H(jtan 2) | ————
|1—tan2§+«/5jtan%|

2

1 1

)

)
2

|A-tan? 92 +2tan??| 1+tan
2 2

As @ increases from 0 to pi, tanE increases monotonically from 0 to oco. Therefore , |H_(e*)]

decreases monotonically from1t0 0 .
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