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Chapter 1 Answers 
1.1 Converting from polar to Cartesian coordinates: 
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1.2 converting from Cartesian to polar coordinates: 
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1.3.  (a) E 
=

4
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1.4.  (a) The signal x[n] is shifted by 3 to the right. The shifted signal will be zero for n<1, And n>7. 

  (b) The signal x[n] is shifted by 4 to the left. The shifted signal will be zero for n<-6. And n>0. 

  (c) The signal x[n] is flipped signal will be zero for n<-1 and n>2. 

    (d) The signal x[n] is flipped and the flipped signal is shifted by 2 to the right. The new Signal will be 

zero for n<-2 and n>4. 

    (e) The signal x[n] is flipped and the flipped and the flipped signal is shifted by 2 to the left.  

   This new signal will be zero for n<-6 and n>0. 

1.5.  (a) x(1-t) is obtained by flipping x(t) and shifting the flipped signal by 1 to the right. 

     Therefore, x (1-t) will be zero for t>-2. 

  (b) From (a), we know that x(1-t) is zero for t>-2. Similarly, x(2-t) is zero for t>-1, 

  Therefore, x (1-t) +x(2-t) will be zero for t>-2. 

  (c) x(3t) is obtained by linearly compression x(t) by a factor of 3. Therefore, x(3t) will be 

  zero for t<1. 
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  (d) x(t/3) is obtained by linearly compression x(t) by a factor of 3. Therefore, x(3t) will be 

  zero for t<9. 

1.6  (a) x1(t) is not periodic because it is zero for t<0. 

  (b) x2[n]=1 for all n. Therefore, it is periodic with a fundamental period of 1. 

  (c) x3[n] is as shown in the Figure S1.6. 

 

     

 

 

   

Therefore, it is periodic with a fundamental period of 4. 

1.7.  (a) 
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   Therefore,  3
 [ ]

v
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 is zero when n <3 and when n  . 
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Therefore,  
4
( )

v
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is zero only when t  . 
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1.9.  (a) 
1

( )tx
 is a periodic complex exponential. 
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  (b) 
2
( )tx  is a complex exponential multiplied by a decaying exponential. Therefore,  

 2
( )tx  is not periodic. 

    （c）
3
[ ]nx  is a periodic signal.  

3
[ ]nx

= 7j n

e
 =

j n

e


. 

       
3
[ ]nx  is a complex exponential with a fundamental period of 2

2


 . 

  (d) 
4
[ ]nx  is a periodic signal. The fundamental period is given by N=m(

2

3 / 5




) 

     = 10
( ).

3
m   By choosing m=3. We obtain the fundamental period to be 10. 

(e) 
5
[ ]nx  is not periodic. 

5
[ ]nx  is a complex exponential with 

0w =3/5. We cannot find any integer m 

such that m(

0

2

w

  ) is also an integer. Therefore, 
5
[ ]nx

 is not periodic. 

1.10.  x(t)=2cos(10t＋1)-sin(4t-1) 

   Period of first term in the RHS = 2

10 5

 


. 

   Period of first term in the RHS = 2

4 2

 


 . 

   Therefore, the overall signal is periodic with a period which the least common  

   multiple of the periods of the first and second terms. This is equal to   . 
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1.11.      x[n] = 1+
7

4
j n

e
 −

2

5
j n

e
  

  Period of first term in the RHS =1. 

  Period of second term in the RHS =









7/4

2 =7 （when m=2） 

  Period of second term in the RHS =









5/2

2



 =5 (when m=1) 

  Therefore, the overall signal x[n] is periodic with a period which is the least common 

  Multiple of the periods of the three terms inn x[n].This is equal to 35. 

1.12.  The signal x[n] is as shown in figure S1.12. x[n] can be obtained by flipping u[n] and then 

Shifting the flipped signal by 3 to the right. Therefore, x[n]=u[-n+3]. This implies that 

  M=-1 and no=-3. 

 

 

 

 

 

 

 

 

1.13 

         y(t)=  

t

dtx )(  = dt
t

))2()2((  
 =















2,0

22,1

2,0

,

t

t

t
 

Therefore  
 

2

2
4dtE

 

1.14 The signal x(t) and its derivative g(t) are shown in Figure S1.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore  

                      









kk

ktkttg 12(3)2(3)(  ) 

This implies that A 1 =3, t 1 =0, A 2 =-3, and t 2 =1. 

1.15 (a) The signal x 2 [n], which is the input to S 2 , is the same as y 1 [n].Therefore , 

            y 2 [n]= x 2 [n-2]+
2

1
 x 2 [n-3] 

                 = y 1 [n-2]+ 
2

1
 y 1 [n-3] 

                 =2x 1 [n-2] +4x 1 [n-3] +
2

1
( 2x 1 [n-3]+ 4x 1 [n-4]) 

                 =2x
1
[n-2]+ 5x 1 [n-3] + 2x 1 [n-4] 

The input-output relationship for S is  

y[n]=2x[n-2]+ 5x [n-3] + 2x [n-4] 
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(b) The input-output relationship does not change if the order in which S 1 and S 2  are connected series 

reversed. . We can easily prove this assuming that S 1  follows S 2 . In this case , the signal x 1 [n], which is the 

input to S 1  is the same as y 2 [n]. 

Therefore                    y 1 [n] =2x
1
[n]+ 4x 1 [n-1] 

= 2y 2 [n]+4 y 2 [n-1] 

                          =2( x 2 [n-2]+
2

1
 x 2 [n-3] )+4(x 2 [n-3]+

2

1
 x 2 [n-4]) 

          =2 x 2 [n-2]+5x 2 [n-3]+ 2 x 2 [n-4] 

The input-output relationship for S is once again     

y[n]=2x[n-2]+ 5x [n-3] + 2x [n-4] 

1.16 (a)The system is not memory less because y[n] depends on past values of x[n]. 

(b)The output of the system will be y[n]= ]2[][ nn  =0 

(c)From the result of part (b), we may conclude that the system output is always zero for inputs of the 

form ][ kn  , k  ґ. Therefore , the system is not invertible . 

1.17 (a) The system is not causal because the output y(t) at some time may depend on future values of x(t). For 

instance , y(- )=x(0). 

(b) Consider two arbitrary inputs x 1 (t)and x 2 (t). 

x 1 (t) y 1 (t)= x 1 (sin(t)) 

x 2 (t)   y 2 (t)= x 2 (sin(t)) 

Let x 3 (t) be a linear combination of x 1 (t) and x 2 (t).That is ,        x 3 (t)=a x 1 (t)+b x 2 (t) 

Where a and b are arbitrary scalars .If x 3 (t) is the input to the given system ,then the corresponding output 

y 3 (t) is                y 3 (t)= x 3 ( sin(t)) 

 =a x 1 (sin(t))+ x 2 (sin(t)) 

=a y 1 (t)+ by 2 (t) 

Therefore , the system is linear. 

1.18.(a) Consider two arbitrary inputs x
1
[n]and x 2 [n]. 

x
1
[n]   y 1 [n] = ][

0

0

1 kx
nn

nnk






 

x 2 [n ]   y 2 [n] = ][
0

0

2 kx
nn

nnk






 

Let x 3 [n] be a linear combination of x
1
[n] and x 2 [n]. That is : 

x 3 [n]= ax
1
[n]+b x 2 [n] 

where a and b are arbitrary scalars. If x 3 [n] is the input to the given system, then the corresponding output 

y 3 [n] is                     y 3 [n]= ][
0

0

3 kx
nn

nnk






 

                                    = ])[][( 21

0

0

kbxkax
nn

nnk






=a ][
0

0

1 kx
nn

nnk






+b ][
0

0

2 kx
nn

nnk






 

       = ay
1
[n]+b y 2 [n] 

Therefore the system is linear. 

(b) Consider an arbitrary input x
1
[n].Let  
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y
1

[n] = ][
0

0

1 kx
nn

nnk






 

be the corresponding output .Consider a second input x 2 [n] obtained by shifting x
1
[n] in time: 

x 2 [n]= x
1
[n-n 1 ] 

The output corresponding to this input is  

y 2 [n]= ][
0

0

2 kx
nn

nnk






= ]n [ 11

0

0






kx
nn

nnk

= ][
01

01

1 kx
nnn

nnnk






 

Also note that                  y 1 [n- n 1 ]= ][
01

01

1 kx
nnn

nnnk






. 

Therefore ,                    y 2 [n]= y 1 [n- n 1 ] 

This implies that the system is time-invariant. 

(c) If ][nx <B, then            y[n] (2 n 0 +1)B. 

Therefore ,C (2 n 0 +1)B. 

1.19 (a) (i) Consider two arbitrary inputs x 1 (t) and x 2 (t).          x 1 (t)   y 1 (t)= t
2

x 1 (t-1) 

                                               x 2 (t)   y 2 (t)= t
2

x 2 (t-1) 

Let x 3 (t) be a linear combination of x 1 (t) and x 2 (t).That is        x 3 (t)=a x 1 (t)+b x 2 (t) 

where a and b are arbitrary scalars. If x 3 (t) is the input to the given system, then the corresponding output 

y 3 (t) is      y 3 (t)= t
2

x 3  (t-1) 

= t
2

(ax 1 (t-1)+b x 2 (t-1)) 

= ay 1 (t)+b y 2 (t) 

Therefore , the system is linear. 

(ii) Consider an arbitrary inputs x 1 (t).Let      y 1 (t)= t
2

x 1 (t-1) 

be the corresponding output .Consider a second input x 2 (t) obtained by shifting x
1

(t) in time: 

x 2 (t)= x
1

(t-t 0 ) 

The output corresponding to this input is     y 2 (t)= t
2

x 2 (t-1)= t
2

x 1 (t- 1- t 0 ) 

Also note that                          y
1

(t-t 0 )= (t-t 0 )
2

x 1 (t- 1- t 0 )  y 2 (t) 

Therefore the system is not time-invariant. 

(b) (i) Consider two arbitrary inputs x
1
[n]and x 2 [n].          x

1
[n]   y 1 [n] = x 1

2
[n-2] 

                                        x 2 [n ]   y 2 [n] = x 2
2

[n-2]. 

Let x 3 (t) be a linear combination of x 1 [n]and x 2 [n].That is   x 3 [n]= ax
1
[n]+b x 2 [n] 

where a and b are arbitrary scalars. If x 3 [n] is the input to the given system, then the corresponding output 

y 3 [n] is             y
3

[n] = x
3

2
[n-2] 

=(a x
1
[n-2] +b x

2
[n-2])

2
 

 =a
2

x
1

2
[n-2]+b

2
x

2

2
[n-2]+2ab x

1
[n-2] x

2
[n-2] 

  ay
1
[n]+b y 2 [n] 

Therefore the system is not linear. 

(ii) Consider an arbitrary input x
1
[n].  Let   y 1 [n] = x 1

2
[n-2]  

be the corresponding output .Consider a second input x 2 [n] obtained by shifting x
1
[n] in time: 

x
2
[n]= x

1
[n- n 0 ] 

The output corresponding to this input is  

y 2 [n] = x 2
2

[n-2].= x 1
2

[n-2- n 0 ] 
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Also note that                   y
1
[n- n 0 ]= x 1

2
[n-2- n 0 ] 

Therefore ,                      y 2 [n]= y
1

[n- n 0 ] 

This implies that the system is time-invariant. 

(c) (i) Consider two arbitrary inputs x
1
[n]and x 2 [n]. 

x
1
[n] y 1 [n] = x

1
[n+1]- x

1
[n-1] 

x 2 [n ]y 2 [n] = x 2 [n+1 ]- x 2 [n -1] 

Let x 3 [n] be a linear combination of x
1
[n] and x 2 [n]. That is : 

x 3 [n]= ax
1
[n]+b x 2 [n] 

where a and b are arbitrary scalars. If x 3 [n] is the input to the given system, then the  

corresponding output y 3 [n] is       y 3 [n]= x 3 [n+1]- x 3 [n-1] 

=a x
1
[n+1]+b x 2 [n +1]-a x

1
[n-1]-b x 2 [n -1] 

                                    =a(x
1
[n+1]- x

1
[n-1])+b(x 2 [n +1]- x 2 [n -1]) 

   = ay
1
[n]+b y 2 [n] 

Therefore the system is linear. 

(ii) Consider an arbitrary input x
1
[n].Let       y

1
[n]= x

1
[n+1]- x

1
[n-1] 

be the corresponding output .Consider a second input x 2 [n] obtained by shifting x
1
[n] in time: x 2 [n]= 

x
1
[n-n 0 ] 

The output corresponding to this input is  

y 2 [n]= x 2 [n +1]- x 2 [n -1]= x
1
[n+1- n 0 ]- x

1
[n-1- n 0 ] 

Also note that                y
1
[n-n 0 ]= x

1
[n+1- n 0 ]- x

1
[n-1- n 0 ] 

Therefore ,                   y 2 [n]= y
1
[n-n 0 ] 

This implies that the system is time-invariant. 

(d) (i) Consider two arbitrary inputs x 1 (t) and x 2 (t). 

x 1 (t)   y 1 (t)= d  (t) x1  

x 2 (t)   y 2 (t)=  (t) x 2d  

Let x 3 (t) be a linear combination of x 1 (t) and x 2 (t).That is     x 3 (t)=a x 1 (t)+b x 2 (t) 

where a and b are arbitrary scalars. If x 3 (t) is the input to the given system, then the corresponding output 

y 3 (t) is          y 3 (t)= d  (t) x3   

=  (t)  xb+(t) ax 21d   

=a d  (t) x1 +b  (t) x 2d = ay 1 (t)+b y 2 (t) 

Therefore the system is linear. 

(ii) Consider an arbitrary inputs x 1 (t).Let 

y 1 (t)= d  (t) x1 =
2

)(x-(t) x 11 t
 

be the corresponding output .Consider a second input x 2 (t) obtained by shifting x
1

(t) in time: 

x 2 (t)= x
1

(t-t 0 ) 

The output corresponding to this input is  

y 2 (t)=  (t) x 2d =
2

)(x-(t) x 22 t  

=
2

)(x-)t-(t x 0101 tt   

Also note that              y
1

(t-t 0 )= 
2

)(x-)t-(t x 0101 tt    y 2 (t) 

Therefore the system is not time-invariant. 
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1.20 (a) Given 

               x )(t = jte2     y(t)=
tje 3

 

        x )(t = jte 2     y(t)=
tje 3

 

Since the system liner 

        tjetx
2

1
(2/1)( jte 2 )    

)(
1

ty
=1/2(

tje 3
+

tje 3
) 

Therefore 

                     x1
(t)= cos(2t)  )(

1
ty =cos(3t) 

(b) we know that 

                      x2
(t)=cos(2(t-1/2))= ( je jte2 + je

jte 2
)/2 

  Using the linearity property, we may once again write 

  x1
(t)=

2

1
( 

je jte2 + je jte 2 )    )(
1

ty =(
je jte3 + je jte 3 )= cos(3t-1)  

   Therefore, 

x1
(t)=cos(2(t-1/2))    )(

1
ty =cos(3t-1) 

1.21.The signals are sketched in figure S1.21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1.21 

1.22 The signals are sketched in figure S1.22 

1.23 The even and odd parts are sketched in Figure S1.23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t 

-1 

0 

-1 

1 2 

2 

1 

3 

x(t-1) 

a 

1 

1/2 

-1/2 
-1 

n 7 
3 2 1 0 

x[3- n] 

0.5 0.5 

t 3/2 -3/2 

t 

4 

-1 3 2 1 0 

1 

2 
x(2-t) 

1 

0 -1 

1 

2 

t 

x(2t+1) 

x(4-t/2) 

t 10 
12 

6 

1 

8 4 

1 

2 )()]()([ tutxtx 

 

t 1 0 

2 

1 

1/2 

-1/2 

-1 

n 7 3 2 1 0 

x[n-4] 

(b) 

-1 

1 

1/2 

-1/2 

n 

2 1 0 

x[3n] 

(c) 

1 

-1 

2 

n 

0 

x[3n+1] 

(d) 

2 

1 

1 

2 

n 

0 

x[n]u[n-3]=x[n] 

(f) 
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t 

-1/2 

x0(t) 

1/2 

-1 -2 0 2 1 t 

1 

-1/2 

x0(t) 

1/2 

-1 -2 0 2 1 

-1/2 

x0(t) 

1/2 

-1 -2 0 2 1 t 

Figure S1.22 

0 1 

1 

n 2 

(h) 

-4 

-1 

-2 

1 
1/2 

n 2 0 

x[3- n]/2 +(-1)
n
x[n]/2 

(g) 

7 
n 

1 

0 
-7 

xo[n] 

x0(t) 

-t/2 

0 
t 

x0(t) 

t 

3t/2 -3t/2 

0 

(a) 

1 

0 

-1/2 

-7 
7 

-1/2 

n 

x[n] 

1 

(c) 

Figure S1.24 

-2 0 

1/2 

2 t 

x0(t) 

(a) 

(b) 

(c) 

Figure S1.23 

1/2 
n 1/2 

-7 
7 

1 

n 

xe
(n) 

3 

(b) 
1/2 

0 
7 

1/2 

-1 

n 

xo[n] 

3/2 

5 

1 

-5 
n 

xe[n] 

0 

3/2 

-3/2 

-1/2 

4 

n 

1/2 
xo[n] 
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1.24 The even and odd parts are sketched in Figure S1.24 

1.25 (a) periodic period=2 /(4)=  /2 

(b) periodic period=2 /(4)= 2 

  (c) x(t)=[1+cos(4t-2 /3)]/2.  periodic period=2 /(4)=  /2 

  (d) x(t)=cos(4 t)/2.  periodic period=2 /(4)= 1/2 

  (e) x(t)=[sin(4 t)u(t)-sin(4 t)u(-t)]/2. Not period. 

(f) Not period. 

1.26 (a) periodic, period=7. 

(b) Not period. 

(c) periodic, period=8. 

(d) x[n]=(1/2)[cos(3 n/4+cos( n/4)). periodic, period=8. 

(e) periodic, period=16. 

1.27 (a) Linear, stable 

(b) Not period. 

(c) Linear 

(d) Linear, causal, stable 

(e) Time invariant, linear, causal, stable 

(f) Linear, stable 

(g) Time invariant, linear, causal 

1.28 (a) Linear, stable 

(b) Time invariant, linear, causal, stable 

(c)Memoryless, linear, causal 

(d) Linear, stable 

(e) Linear, stable 

(f) Memoryless, linear, causal, stable 

(g) Linear, stable 

1.29 (a) Consider two inputs to the system such that 

      1 1 1 .S

e
x n y n x n  and       2 2 1 .S

e
x n y n x n   

Now consider a third input x3
[n]= x2

[n]+ x1
[n]. The corresponding system output 

Will be        

    

    

     

   

3 3

1 2

1 2

1 2

e

e

e e

y n x n

x n x n

x n x n

y n y n



 

 

 





 

   

therefore, we may conclude that the system is additive 

Let us now assume that inputs to the system such that 

      / 4

1 1 1 .S j

e
x n y n e x n   

and 

      / 4

2 2 2 .S j

e
x n y n e x n   

Now consider a third input x3 [n]= x2 [n]+ x1 [n]. The corresponding system output 

Will be 

    

         

         

         

     
   

/ 4

3 3

3 3

1 1

2 2

/ 4 / 4

1 2

1 2

cos / 4 sin / 4

cos / 4 sin / 4

cos / 4 sin / 4

j

e

me

me

me

j j

e e

y n e x n

n x n n x n

n x n n x n

n x n n x n

e x n e x n

y n y n



 

 

 

 



 

 

 

 

 



 

 

 

 

 

therefore, we may conclude that the system is additive 

(b) (i) Consider two inputs to the system such that 
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   
 

 
2

1

1 1

1

1S
dx t

x t y t
x t dt

 
   

 

     and      
 

 
2

2

2 2

1

1S
dx t

x t y t
x t dt

 
   

 

 

Now consider a third input x3
[t]= x2

[t]+ x1
[t]. The corresponding system output 

Will be 

 
 

 

   

   

   

2

3

3

3

2

1 1

1 1

1 2

1

1

dx t
y t

x t dt

d x t x t

x t x t dt

y t y t

 
  

 

     
   

 

 

therefore, we may conclude that the system is not additive 

Now consider a third input x4 [t]= a x1 [t]. The corresponding system output 

Will be 

 
 

 

 

 

 

 

 

2

4

4

4

2

1

1

2

1

1

1

1

1

dx t
y t

x t dt

d ax t

ax t dt

dx ta

x t dt

ay t

 
  

 

     
  

 
  

 



 

Therefore, the system is homogeneous. 

(ii) This system is not additive. Consider the fowling example .Let  [n]=2 [n+2]+ 

2 [n+1]+2 [n] and x2
[n]=  [n+1]+ 2 [n+1]+ 3 [n]. The corresponding outputs evaluated at n=0 are 

   1 20 2 0 3/ 2y and y   

Now consider a third input x3 [n]= x2 [n]+ x1 [n].= 3 [n+2]+4 [n+1]+5 [n] 

The corresponding outputs evaluated at n=0 is y3[0]=15/4. Gnarly, y3[0]  ]0[][
21

yy n  .This  

 
   

 
 

4 4

4

4 4

2
, 1 0

1

0,

x n x n
x n

y n x n
otherwise

 
 

 



 

 
   

 
 

 
4 4

4

5 44

2
, 1 0

1

0,

x n x n
a x n

y n ay nx n
otherwise

 
 

 



 

Therefore, the system is homogenous. 

1.30 (a) Invertible. Inverse system y(t)=x(t+4) 

(b)Non invertible. The signals x(t) and x1(t)=x(t)+2 give the same output 

(c) [n] and 2 [n] give the same output 

d) Invertible. Inverse system; y(t)=dx(t)/dt 

(e) Invertible. Inverse system y(n)=x(n+1) for n 0 and y[n]=x[n] for n<0 

(f) Non invertible. x(n) and –x(n) give the same result 

(g)Invertible. Inverse system y(n)=x(1-n) 

(h) Invertible. Inverse system y(t)=dx(t)/dt 

(i) Invertible. Inverse system y(n) = x(n)-(1/2)x[n-1] 

(j) Non invertible. If x(t) is any constant, then y(t)=0 

(k) [n] and 2 [n] result in y[n]=0 

(l) Invertible. Inverse system: y(t)=x(t/2) 

(m) Non invertible x1 [n]= [n]+ [n-1]and x2 [n]= [n] give y[n]= [n] 

(n) Invertible. Inverse system: y[n]=x[2n] 

1.31 (a) Note that x2[t]= x1 [t]- x1 [t-2]. Therefore, using linearity we get y2 (t)= 

y1 (t)- y1 (t-2).this is shown in Figure S1.31 

(b)Note that x3 (t)= x1 [t]+ x1 [t+1]. .Therefore, using linearity we get Y3 (t)=  y1 (t)+ y1 (t+2). this is 
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shown in Figure S1.31 

 

 

 

 

 

 

 

 

 

1.32 All statements are true 

(1) x(t) periodic with period T;  y1 (t) periodic, period T/2 

(2) y1 (t) periodic, period T; bx(t) periodic, period2T 

(3) x(t) periodic, period T; y2 (t) periodic, period2T 

(4) y2(t) periodic, period T; x(t) periodic, period T/2; 

1.33(1) True x[n]=x[n+N]; y1 (n)= y1 (n+ N0)i.e. periodic with N0=n/2 

if N is even and with period N0=n if N is odd. 

(2)False. y1 [n] periodic does no imply x[n] is periodic i.e. Let x[n] = g[n]+h[n] where             

0,1,
[ ] [ ]

0, (1/ 2) ,n

neven neven
g n and h n

n odd n odd


  
 

 

Then y1 [n] = x [2n] is periodic but x[n] is clearly not periodic. 

(3)True. x [n+N] =x[n]; y2 [n+N0] =y2 [n] where N0=2N 

(4) True. y2 [n+N] =y2 [n]; y2 [n+N0 ]=y2 [n] where N0=N/2 

1.34. (a) Consider  

If x[n] is odd, x[n] +x [-n] =0. Therefore, the given summation evaluates to zero. 

(b) Let y[n] =x1[n]x2[n] .Then 

                  y [-n] =x1[-n] x2[-n] =-x1[n]x2[n] =-y[n]. 

This implies that y[n] is odd. 

(c)Consider  

 

                     

 

Using the result of part (b), we know that xe[n]xo[n] is an odd signal .Therefore, using  

the result of part (a) we may conclude that  

Therefore, 

(d)Consider  

Again, since xe (t) xo (t) is odd, 

Therefore, 

1.35. We want to find the smallest N0 such that m(2π /N) N0 =2πk or N0 =kN/m,    

y2 (t) 

-2 

2 

0 2 

4 t 

0 2 -1 

t 

Figure S1.31 

y3 (t) 

 
1

[ ] [0] [ ] [ ]
n n

x n x x n x n
 

 

    

2 2
[ ] [ ]

e o
n n

n nx x
 

 

  

2 2 2
[ ] [ ] [ ]

e o
n n n

n n nx x x
  

  

   

2 [ ] [ ] 0
e o

n

n nx x






2 2 2
[ ] [ ] [ ].

e o
n n n

n n nx x x
  

  

   

2 2 2

0
( ) ( ) ( ) 2 ( ) ( ) .

e o e
t dt t dt t dt t t dtx x x x x

   

   
     

0
( ) ( ) 0.

e
t t dtx x






2 2 2
( ) ( ) ( ) .

e o
t dt t dt t dtx x x

  

  
   
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( ) ( ) ( )

( ) ( )

( ).

xy

yx

t x t y d

y t x d

t

   

  











 

  

 





where k is an integer, then N must be a multiple of m/k and m/k must be an integer .this implies that m/k is a 

divisor of both m and N .Also, if we want the smallest possible N0, then m/k should be the GCD of m and N. 

Therefore, N0=N/gcd(m,N). 

1.36．(a)If x[n] is periodic 
0 ( ) ,

0.. 2 /
j n N T

oe where T
  

  This implies that                                                                                                                     

0

2
2

o

T k
NT k

T T N


    a rational number . 

 (b)T/T0 =p/q then x[n] = 
2 ( / )j n p qe 

,The fundamental period is q/gcd(p,q) and the fundmental frequency 

is  

 (c) p/gcd(p,q) periods of x(t) are needed . 

1.37.(a) From the definition of ( ).xy t We have 

 

 

 

 

part(a) that ( ) ( ).xx xxt t   This implies that ( )xy t is  (b) Note from 

even .Therefore, 

the odd part of ( ).xx t is zero. 

(c) Here, ( ) ( ).xy xxt t T   and ( ) ( ).yy xxt t   

1.38.(a) We know that / 22 (2 ) ( ).t t  Therefore 

This implies that  

1
(2 ) ( ).

2
t t   

(b)The plot are as shown in Figure s3.18. 

1.39 We have  

0 0
lim ( ) ( ) lim (0) ( ) 0.u t t u t 
 

   

     Also,    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 02 2
gcd( , ) gcd( , ) gcd( , ) gcd( , ).

Tp
p q p q p q p q

q p q p p

  
  

/ 2

1
lim (2 ) lim ( ).

2
t t 

 


0

1
lim ( ) ( ) ( ).

2
u t t t 




uΔ
'（t） 

1 

1/2 

Δ/2 -Δ/2 t 0 
t 

uΔ
'

（t） 1 

2

Δ 

Δ t 0 
t 

uΔ
'（t） 

1 

1/2 

Δ -Δ t 
0 

t 

uΔ
'（t） 

1 

1/2 

Δ 
-Δ 

t 
0 

t 
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We have  







0
)()()()()(  dtudtutg  

 

Therefore, 

0, 0

( ) 1, 0

0

t

g t t

undefined for t




 
 

( ) 0

( ) ( ) ( )

t

u t t

 

    

 

  
 

1.40.(a) If a system is additive ,then  

also, if a system is homogeneous,then 

(b) y(t)=x
2
(t) is such a systerm . 

(c) No.For example,consider y(t) ( ) ( )
t

y t x d 


   with ( ) ( ) ( 1).x t u t u t   Then x(t)=0 

for t>1,but y(t)=1 for t>1. 

1.41. (a) y[n]=2x[n].Therefore, the system is time invariant. 

     (b) y[n]=(2n-1)x[n].This is not time-invariant because y[n- N0]≠(2n-1)2x[n- N0]. 

     (c) y[n]=x[n]{1+(-1)
n
+1+(-1)

n-1
}=2x[n].Therefore, the system is time invariant . 

1.42.(a) Consider two system S1 and S2 connected in series .Assume that if x1(t) and x2(t) are  

the inputs to S1..then y1(t) and y2(t) are the outputs.respectively .Also,assume that 

 if y1(t) and y2(t) are the input to S2 ,then z1(t) and z2(t) are the outputs, respectively . Since S1 is 

linear ,we may write  

       
1

1 2 1 2 ,
s

ax t bx t ay t by t    

where a and b are constants. Since  S2 is also linear ,we may write  

       
2

1 2 1 2 ,
s

ay t by t az t bz t    

We may therefore conclude that  

)()()()(
2121

21 tbtatbta zzxx
ss

  

Therefore ,the series combination of S1 and S2 is linear. 

Since S1 is time invariant, we may write  

   
1

1 0 1 0

s

x t T y t T    

and  

                           
2

1 0 1 0

s

y t T z t T    

Therefore,  

   
1 2

1 0 1 0

s s

x t T z t T    

Therefore, the series combination of S1 and S2 is time invariant. 

(b) False, Let y(t)=x(t)+1 and z(t)=y(t)-1.These corresponds to two nonlinear systems. If these systems are 

connected in series ,then z(t)=x(t) which is a linear system. 

0 0. ( ) ( ).0 0x t y t  

0 ( ) ( ) ( ) ( ) 0x t x t y t y t    

1 

1-1/2e
-t/Δ

 

uΔ
'（t） 

1 

Δ -Δ 0 t 

uΔ
'（t） 

1 

1/2 

Δ 
-Δ 

0 

1/2e
-t/Δ

 

t 

Figure s3.18 
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(c) Let us name the output of system 1 as w[n] and the output of system 2 as z[n] .Then  

1 1
[ ] [2 ] [2 ] [2 1] [2 2]

2 4
y n z n w n w n w n       

     2
4

1
1

2

1
 nxnxnx  

The overall system is linear and time-invariant. 

1.43. (a) We have  

  )(tytx s  

Since S is time-invariant. 

  )( TtyTtx s   

Now if x (t) is periodic with period T. x{t}=x(t-T). Therefore, we may conclude that y(t)=y(t-T).This implies 

that y(t) is also periodic with T .A similar argument may be made in discrete time . 

(b) 

1.44 (a) Assumption : If x(t)=0 for t<t0 ,then y(t)=0 for t< t0.To prove That : The system is causal. 

Let us consider an arbitrary signal x1(t) .Let us consider another signal x2(t) which is the same as    x1(t)for 

t< t0. But for t> t0 , x2(t) ≠x1(t),Since the system is linear, 

       1 2 1 2 ,x t x t y t y t    

Since    1 2 0x t x t  for t< t0 ,by our assumption =    1 2 0y t y t  for t< t0 .This implies that 

   1 2y t y t for t< t0 . In other words, t he output is not affected by input values for 0t t . Therefore, the 

system is causal . 

Assumption: the system is causal . To prove that :If x(t)=0 for t< t0 .then y(t)=0 for t< t0 . 

Let us assume that the signal x(t)=0 for t< t0 .Then we may express x(t) as    1 2( )x t x t x t  , 

Where    1 2x t x t  for t< t0 . the system is linear .the output to x(t) will be 

   1 2( )y t y t y t  .Now ,since the system is causal .    1 2y t y t  for t< t0 .implies that  

   1 2y t y t  for t< t0 .Therefore y(t)=0 for t< t0 . 

(b) Consider y(t)=x(t)x(t+1) .Now , x(t)=0 for t< t0 implies that y(t)=0 for t< t0 .Note that the system is 

nonlinear and non-causal . 

(c) Consider y(t)=x(t)+1.  the system is nonlinear and causal .This does not satisfy the condition of part(a). 

(d) Assumption: the system is invertible. To prove that :y[n]=0 for all n only if x[n]=0 for all n . 

Consider  

                                  [ ] 0 [ ]x n y n  . 

Since the system is linear : 

                                  2 [ ] 0 2 [ ]x n y n  .  

Since the input has not changed in the two above equations ,we require that y[n]= 

2y[n].This implies that y[n]=0. Since we have assumed that the system is invertible , 

only one input could have led to this particular output .That input must be x[n]=0 . 

     

Assumption: y[n]=0 for all n if x[n]=0 for all n . To prove that : The system is invertible . 

Suppose that  

                                    1 1[ ] [ ]x n y n  

and  

2 1[ ] [ ]x n y n  

Since the system is linear , 

                      1 2 1 2[ ] [ ] [ ] [ ] 0x n x n y n y n     

By the original assumption ,we must conclude that 1 2[ ] [ ]x n x n .That is ,any particular y1[n] can be 

produced that by only one distinct input x1[n] .Therefore , the system is  

invertible. 

(e) y[n]=x
2
[n]. 

1.45. (a) Consider , 
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                        
11 1( ) ( )

s

hxx t y t t   

and  

                        
22 2 ( ) ( )

s

hxx t y t t  . 

Now, consider      3 1 2x t ax t bx t  . The corresponding system output will be  

   
1 2

3 3

1 2

1 2

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

hx hx

y t x h t d

a x h t d b x t h t d

a t b t

ay t by t

  

    

 





 

 

 

   

 

 



   

Therefore, S is linear . 

Now ,consider x4(t)=x1(t-T).The corresponding system output will be 

 

 
1

4 4

1

1

( ) ( ) ( )

( ) ( )

( ) ( )

hx

y t x h t d

x T h t d

x h t T d

t T

  

  

  















 

  

  

 







 

 Clearly, y4(t)≠ y1(t-T).Therefore ,the system is not time-invariant. 

The system is definitely not causal because the output at any time depends on future  

values of the input signal x(t). 

(b) The system will then be linear ,time invariant and non-causal. 

1.46. The plots are in Figure S1.46. 

1.47.(a) The overall response of the system of Figure P1.47.(a)=(the response of the system to  

x[n]+x1[n])-the response of the system to x1[n]=(Response of a linear system L to x[n]+x1[n]+ 

zero input response of S)- (Response of a linear system L to x1[n]+zero input response of S)=( (Response of a 

linear system L to x[n]). 
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Chapter 2 answers  
2.1 (a) We have know that 

1 [ ]* [ ] [ ] [ ]
k

y x n h n h k x n k




    

The signals x[n] and h[n] are as how in Figure S2.1 

 

 

 

 

 

 

 

 

 

 

 

From this figure, we can easily see that the above convolution sum reduces to 

1[ ] [ 1] [ 1] [1] [ 1]y n h x n h x n      

2 [ 1] 2 [ 1]x n x n     

This gives 

                    1[ ] 2 [ 1] 4 [ ] 2 [ 1] 2 [ 2] 2 [ 4]y n n n n n n              

(b)We know that 

                   2[ ] [ 2]* [ ] [ ] [ 2 ]
k

y n x n h n h k x n k




      

   Comparing with eq.(S2.1-1),we see that 

2 1[ ] [ 2]y n y n   

(c) We may rewrite eq.(S2.1-1) as 

1[ ] [ ]* [ ] [ ] [ ]
k

y n x n h n x k h n k




    

  Similarly, we may  write 

                   3[ ] [ ]* [ 2] [ ] [ 2 ]
k

y n x n h n x k h n k




      

Comparing this with eq.(S2.1),we see that 

                           3 1[ ] [ 2]y n y n   

2.2  Using given definition for the signal h[n], we may write 

                         
1

1
[ ] [ 3] [ 10]

2

k

h k u k u k



 
    
 

 

The signal h[k] is non zero only in the rang 1[ ] [ 2]h n h n  . From this we know that the signal h[-k] is  

non zero only in the rage 9 3k   .If we now shift the signal h[-k] by n to the right, then the resultant signal 

h[n-k] will be zero in the range ( 9) ( 3)n k n    . 

Therefore , 

                         9,A n          3B n   

2.3 Let us define the signals  

1

1
[ ] [ ]

2

n

x n u n
 

  
 

 

and 

                         1[ ] [ ]h n u n . 

We note that 

                   1[ ] [ 2]x n x n       and     1[ ] [ 2]h n h n   

Now, 

(S2.1-1) 

 

 

 

 

 

1 

2 

2 

3 

4 0 1 

-1 

n 

x[n] 

n 2 0 1 -1 

2 

h[n] 

2 

Figure S2.1 
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1 1 1 1[ ] [ ]* [ ] [ 2]* [ 2] [ 2] [ 2]
k

y n x n h n x n h n x k h n k




         

By replacing k with m+2 in the abovr summation ,we obtain 

           
1 1 1 1[ ] [ ] [ ] [ ] [ ]

m

y n x m h n m x n h n




    

Using the results of Example 2.1 in the text book ,we may write 
1

1
[ ] 2 1 [ ]

2

n

y n u n

  
   

   

 

2.4   We know that 

                   [ ] [ ]* [ ] [ ] [ ]
k

y n x n h n x k h n k




    

The signals x[n] and y[n] are as shown in Figure S2.4.From this figure,we see that the above summation 

reduces to 

[ ] [3] [ 3] [4] [ 4] [5] [ 5] [6] [ 6] [7] [ 7] [8] [ 8]y n x h n x h n x h n x h n x h n x h n            This gives 

6, 7 11

6, 12 18
[ ]

24 ,19 23

0,

n n

n
y n

n n

otherwise

  


 
 

  


 

 

 

 

 

 

 

 

2.5．The signal y[n] is  

y[n]= x[n] h[n] = 





k

knhkx ][][ . 

In this case , this summation reduces to  

y[n]=



9

0

][][
k

knhkx =



9

0

][
k

knh . 

From this it is clear that y[n] is a summation of shifted replicas of h[n]. Since the last replicas will begin at n=9 

and h[n] is zero for n>N, y[n] is zero for n>N+9. Using this and the fact y[14]=0,we may conclude that N can 

at most be 4. Furthermore ,since y[4]=5,we can conclude that h[n] has at least 5 non-zero points . The only 

value of N which satisfies both these conditions is 4. 

2.6. From the given information, we have : 

y[n]= x[n] h[n] = 





k

knhkx ][][ . 

                    = 




 
k

k knuku ]1[]1[)
3

1
( . 

             =





 
1

]1[)
3

1
(

k

k knu
. 

           =




 
1

]1[)
3

1
(

k

k knu . 

Replacing k by p-1, 

y[n]= =




 
0

1 ][)
3

1
(

p

p pnu                (S2.6-1) 

For n 0 the above equation reduces to, 

4 

8 
n 3 4 

x[n] 

15 n 

h[n] 

Figure.S2.4 
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y[n]=






0

1)
3

1
(

p

p  =

2

1

3

1
1

1

3

1




  

For n<0 eq.(S2.6-1) reduces to, 

y[n]= 






np

p 1)
3

1
( = 







0

1 )
3

1
()

3

1
(

p

pn =

3

1
1

1
)

3

1
( 1



n = 
2

3

2

1
)

3

1
(

n
n   

Therefore,  

y[n]= 









0),2/1(

0),2/3(

n

nn

 

2.7.(a) Given that  

x[n]=  [n-1], 

we see that  

y[n] = 





k

kngkx ]2[][ =g[n-2]=u[n-2]-u[n-6] 

(b) Given that   x[n]=  [n-2], 

we see that     y[n] = 





k

kngkx ]2[][ =g[n-4]=u[n-4]-u[n-8] 

 ( c) The input to system in part(b) is the same as the input in part(a) shifted by 1 to the right . If S is the time 

invariant then the system output obtained in part(b) has to the be the same as the system output obtained in part 

(a) shifted by 1 to the right . Clearly , this is not the case .Therefore ,the system is not LTI. 

（d）If x[n]=u[n], then  

y[n] = 





k

kngkx ]2[][  

= 





k

kng ]2[  

The signals g[n-2k] is plotted for k=0,1,2 in Figure S2.7. From this figure it is clear that  

y[n]= 













otherwise

n

n

,0

1,2

1,0,1

=2u[n]- ]1[][  nn   

 

 

 

 

 

 

 

2.8 Using the convolution integral. 

         ( )*x t h t x h t h x t d    
 

 
      

Given that      2 2 1h t t t     ,the above integral reduces to 

       * 2 2 1x t y t x t x t     

This signal x(t+2) and 2x(t+1) are plotted in Figure S2.8. 

  

 

 

 

 

 

 

Figure S2.1 

n 3 1 0 

g[n] 

2 

1 

n 4 2 5 

g[n-2] 

3 

1 

n 6 4 7 

g[n-4] 

5 

1 

1 

2 

1 0 -1 

x(t+1) 

t 

1 

2 

-2 -1 

x(t+2) 

0 t 
Figure S2.8 



 20 

Using these plots, we can easily show that 

 

3, 2 1

4, 1 0

2 2 , 0 1

0,

t t

t t
y t

t t

otherwise

    


   
 

  


 

2.9 Using the give definition for the signal h(t), we may write 

                    

2

2 2 2

, 5

4 5 , 4

0, 4 5

e

h e u e u e



  



   







 


      
  

 

Therefore, 

 

2

2

, 5

, 4

0, 5 4

e

h e







 





  


   
    

 

If  we now shift the signal h(- ) by t to the right, then the resultant signal h(t- ) will be 

                         

 

 

 

2

2

, 5

, 4

0, 5 ( 4)

t

t

e t

h t e t

t t







 



 



  


   
   


 

Therefore 

,5 TA         .4 tB  

2.10 From the given information, we may sketh x(t) and h(t) as show, in Figure S2.10. 

(a) With the aid of the plots in Figure S2.10, we can show that )(*)()( thtxty   is as shown in 

Figure S2.10. 

 

 

 

 

 

 

 

 

 

 

 

Therefore, 

                     
 

, 0

, 1

1 ,1 (1 )

0,

t t

t
y t

t t

otherwise



 

 

 


 
 

    


 

(b) From the plot of y(t), it is clear that ( )dy t

dt
 has discontinuities at 0, ,1,and 1+ . If we want ( )dy t

dt

 

to have only three discontinuities, then we need to ensure that  =1. 

2.11(a)From the given information, we see that ( )h t  is non zero only for 0 t  .Therefore, 

         *y t x t h t h x t d  



    

                  3 ( 3 5e u t u t d   





       

We can easily show that     3 5u t u t       is non zero only in the range  ( 5) 3t t    .

 Therefore, for 3t  , the above integral evaluates to zero .For 3 5t  , the above integral is 

                
 3 3

3
3

0

1

3

t
t e

y t e d 
 


 

   

x(t) 
1 

0 1 t 

t 

h(t) 
1 

0   

  1 

 

0 1 

  

t 
Figure S2.10 
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For 5t  , the integral is  

                  
 

 
3 56

3
3 3 15 9

5

(1 ) 1

3 3

t
t

t

t

e e
y t e d e e e 

 


 




     

Therefore, the result of this convolution may be expressed  as 

3( 3)

6 3( 3)

0,

31
,

( ) 3 53

5(1 )
,

3

t

t

te

y t t

te e

 

  


   

  
   


 

(b) By differentiating x(t) with  respect to time we get  

( )
( 3) ( 5)

dx t
t t

dt
      

Therefore , 

           

3( 3) 3( 5)( )
( ) * ( ) ( 3) ( 5)

( )

t tdx t
g t h t e u t e u t

d t

       
. 

(c) From the result of part (a),we m ay compute the derivative of y(t) to be  

              

3( 3)

6 3( 3)

0,

31
( ) ,

3 53

5(1 )
,

3

t

t

te
dy t

t
dt

te e

 

  


   

  
   


 

This is exactly equal to g(t) .therefore , ( )
( )

dy t
g t

dt
  

2.12. The result y(t) may be written as  

        
( 6) ( 3) ( 3) ( 6)( ) ( 6) ( 3) ( ) ( 3) ( 6)t t t t ty t e u t e u t e u t e u t e u t                    

In the range 0 3t     ,we may write y(t) as 

        
( 6) ( 3)( ) ( 6) ( 3) ( )t t ty t e u t e u t e u t           

            =
( 3) ( 6)t t te e e        

            =
3 6(1 )te e e      

            =
3

1

1

te
e




 

Therefore ,    A=
3

1

1 e
. 

2.13.  (a) we require  that  

11 1
( ) [ ] ( ) [ 1] [ ]
2 2

n nu n A u n n    

Putting n=1 and solving for A gives 
1

5
A   

(b) From part (a),we know that  

                               
1

[ ] [ 1] [ ]
5

1
[ ]*( [ ] [ 1] [ ]

5

h n h n n

h n n n n



  

  

  
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         From the definition of an inverse system ,we may argue that  

                               
1

[ ] [ ] [ 1]
5

g n n n     

2.14.  (a) We first determine if  1( )h t   is absolutely integrable as follows  

                               1
0

| ( ) | 1th d e d  
 




    

         Therefore , is the impulse response of a stable LTI system . 

      (b) we determine if  2 ( )h t  is absolutely integrable as follows  

                               2
0

| ( ) | | cos(2 ) | 1th d e t d  
 




    

        This integral is clearly finite-valued because 
te
|cos (2t)|is an exponentially decaying function in 

the range t  .Therefore , 2 ( )h t  is impulse response of a stable LTI system. 

2.15.   (a) We determine if 1[ ]h n  is absolutely summable as follows  

                              
1

0

| [ ] | | cos( ) |
4k

h k k k
 



 
 

          This sum does not have a finite value because the function 
| cos( )

4
k k

  increase as the value of k 

increase .Therefore , 1[ ]h n  cannot be the impulse response of a stable LTI system . 

       (b)We determine if 2[ ]h n  is absolutely summable as follows 

                              ( )* ( )x t h t   

          Therefore , 2[ ]h n  is the response of a stable LTI system . 

2.16.   (a) True. This may be easily argued by noting that convolution may be viewed as the process of 

carrying out the superposition of a number of echos of [ ]h n . The first such echo will occur at 

the location of the first non zero samples [ ]h x . In this case, the first echo will occur at 

1n N will have its first non zero sample at the time location 1 2N N . Therefore ,for all 

values of n which are lesser that 1 2N N ,the output [ ]y n  is zero. 

         (b) False . Consider  

                                     [ ] [ ]* [ ]y n x n h n  

                                          = [ ] [ ]
k

x k h n k




  

              From this , 

                                   [ 1] [ ] [ 1 ]
k

y n x k h n k




     

                                           = [ ]* [ 1]x n h n  

              This shows that the given statement is false. 

          (c ) True. Consider  

                                   ( ) ( )* ( ) ( ) ( )y t x t h t x h t d  



    

              From this ,  

                                   ( ) ( ) ( )y t x h t d  



     

                                         = ( ) ( )x h t d  



    

                                         = ( )* ( )x t h t   

               This shows that the given statement is true. 

          (d) True .This may be argued by considering  

                                   



  dthxthtxty )()()(*)()(  

  In figure S2.16 , we plot ( )x   and ( )h t   under the assumptions that (1) ( ) 0x t    

for 1t T  and (2) ( ) 0h t   for 2t T .Clearly ,the product  
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               ( ) ( )x h t   is zero if 2 1t T T  . Therefore, ( ) 0u t   for 1 2t T T   

 

 

                                                                

       

 

 

 

                                       Figure  S2.16 

2.17.      (a) We know that ( )y t  is the sum of the particular and homogeneous solutions to the given 

differential equation .We first determine the particular solution )(ty p  by using the method 

specified in Example 2.14. Since  we are given that the input is )()( )31( tuetx tj ,for t>0 ,we 

hypothesize that for t>0 

tj

p Kety )31()(  . 

          Substituting for )(tx  and ( )y t  in the given differential equation, 

                            tjtjtj eKeKej )31()31()31( 431    

         This gives  

                         1431  KKj ,        
)1(3

1

j
K




 

         Therefore ,  

,
)1(3

1
)( )31( tj

p e
j

ty 


    t>0 

In order to determine the homogeneous solution, we hypothesize that  

                               
st

h Aety )(  

Since the homogeneous solution has to satisfy the following differential equation  

0)(
)(

 tAy
dt

tdy
h

h
, 

we obtain  

0)4(4  sAeAeAse ststst
, 

        This implies that s=-4 for any A .The overall solution to the differential equation now becomes  

,0
)1(3

1





j
A

  
)1(3

1

j
A






   

Therefore for t > 0, 

                     ],[
)1(3

1
)( )31(4 tjt ee

j
ty  


   t>0 

Since the system satisfies the condition of initial rest , 0)( ty  for t < 0. Therefore, 

                     
tjt tuee

j
ty )31(4 )(][

6

1
)(  


  

     (b) The output will now be the real part of the answer obtained in part (a). 

)(]3sin3cos[
6

1
)( 4 tuetetety ttt   . 

2.18.  Since the system is causal, y[n] =0 for n < 1. Now, 

                            110]1[]0[
4

1
]1[  xyy  

                     
4

1
0

4

1
]2[]1[

4

1
]2[  xyy

 

                     
16

1
0

16

1
]3[]2[

4

1
]3[  xyy

 

                              

                     1)
4

1
(][  mmy  

                               

T1 

( )x 

 

τ 
t-T2 

( )h t 

 

τ 
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  Therefore,  

                               ]1[)
4

1
(][ 1   nuny n  

2.19.  (a)  Consider the difference equation relating ][ny  and ][nw  for 
2s : 

][][][ nwnyny    

          From this we may write  

]1[][
1

][  nynynw






 

         and  

                                       ]2[]1[
1

]1[  nwnynw





 

        Weighting the previous equation by 1/2 and subtracting from the one before ,we obtain  

 

]2[]1[
2

1
]1[][

1
]1[

2

1
][  nynynynynwnw










 

          Substituting this in the difference equation relating ][nw  and ][nx  for 1S . 

][]2[
2

]1[
2

1
]1[][

1
nxnynynyny 










 

         Comparing with the given equation relating ][ny  and ][nx , we obtain  

4

1
 , 1  

        (b) The difference equation relating the input and output of the system 1S  and 2S are  

                   ][]1[
2

1
][ nxnwnw     and     ][]1[

4

1
][ nwnyny     

          From these, we can use the method specified in Example 2.15 to show that the impulse response 

of 1S  and 2S  are  

                                 ][)
2

1
(][1 nunh n  

            and  

                                ][)
4

1
(][2 nunh n . 

     Respectively. The overall impulse response of the system made up of a cascade of 1S  and 2S  will be 

                               ][][][*][][ 2121 knhkhnhnhnh
k

 




 

                                                = ][)
4

1
()

2

1
(

0

knnkn

k

k 




  

                                                = ][)
4

1
()

2

1
(

0

knnkn
n

k

k 



  

                                                = 






0

)(2)
2

1
(

k

kn
= ][])

4

1
()

2

1
(2[ nunn   

                                                  

2.20.  (a)    

                                           1)()cos()(0  







dttdtttu   

      (b)  

                                       
5

0
0)6sin()3()2sin(  dttt  

(c) In order to evaluate the integral  

                                          
5

5
1 ,)2cos()1(  du  

consider the signal  

)]5()5[()[2cos()(  tututtx   

   We know that  
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                          



  dxtutxtu

dt

tdx
)()()(*)(

)(
11

 

                                =  
5

5
1 )2cos()(  dtu  

Now 

     dy

dx

∣t=1= 5

1
5

(1 )cos(2 )u d  


  

Which is the desired integral. We now evaluate the value of the integral as 

        
dy

dx
∣t=1= 1sin(2 ) | 0tt    

2.21 (a) the desired convolution is  

y[n]=x[n]*h[n] 

          = [ ] [ ]
k

x k h n k




  

          =

0

( / )
n

n k

k

  



 for n>=0 

          = 1 1( ) /( )n n       
u[n] for     

(b) from (a)      

                 y[n]= 
n

0

1
n

k

 
 
 
 u[n]=(n+1) 

n u[n] 

(c) for n <=6   

                 y[n]= 4n 
3

0 0

( 1/8) ( 1/8)

k

k

k k



 


  


   

       for n>6 

                  y[n]= 
0

4 ( 1/8)

k

n

k









 - 

1

0

( 1/8)
n

k

k





  

      therefore 

                 y[n]= 

4(8 / 9)( 1/8) 4 , 6

(8 / 9)( 1/ 2) , 6

n

n

n

n

  


   

(d) the desired convolution is  

                     y[n]= [ ] [ ]
k

x k h n k




  

                        =x[0]h[n]+x[1]h[n-1] +x[2]h[n-2] +x[3]h[n-3] +x[4]h[n-4] 

                        =h[n]+ h[n-1]+ h[n-2]+ h[n-3]+ h[n-4] 

           This is shown in figure s2.21 

 

 

 

 

 

 

 

 

2.22 (a)the desire convolution is  

5 

20 10 1 

1 

4 
3 

2 
1 

n 

Y[n] 

Figure s2.21 
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                   y(t)= ( ) ( )x h t d  



  

                         = 

( )

0

t
t te e d     

  t>=0 

      Then  

              y(t) = 
[( ) /( )] ( )

( )

t t

t

e e u t

te u t

 



   

 

 



    


 

 

(b) the desire convolution is  

              y(t)= 
( ) ( )x h t d  




  

                        = 

2

0
( )h t d  - 

5

2
( )h t d   

     This  may be  written as 

          y(t)= 

2 5
2( ) 2( )

0 2

2 5
2( ) 2( )

1 2

5
2( )

1

, 1

,1 3

,3 6

0,6

t t

t t

t

t

t

e d e d t

e d e d t

e d t

t

 

 



 

 



 

 







  



  

  

 

 

 

  

     Therefore 
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             y(t)= 

2 4 10

2 2 2 10 4

2 10 2 2

(1/ 2) [1 2 ], 1

(1/ 2) [ 2 ],1 3

(1/ 2) [ ],3 6

0,6

t

t t

t t

e e e t

e e e e t

e e e t

t

 

  

 

   


   


  
 

 

(c) the desire convolution is  

              y(t)= ( ) ( )x h t d  



 =

2

0
sin( ) ( )h t d   , 

This give us  

                y(t)= 

0, 1

(2 / )[1 cos{ ( 1)}],1 3

(2 / )[cos{ ( 3)} 1],3 5

0,5

t

t t

t t

t

 

 




   


   
 

 

(e) let  

                   h(t)= 1h (t)- 
1

( 2)
3

t   

       where 

                     1h (t)= 
4 / 3,0 1

0,

t

otherwise

 



 

     Now         Y(t)=h(t)*x(t)=[ h(t)*x(t)]- 
1

( 2)
3

x t   

We have  

     1h (t)* x(t)= 2 2

1

4 4 1 1
[( )] [ ( 1) ( 1)]

3 3 2 2

t

t
a b d at a t bt b t 


       

     Therefore 

         y(t)= 2 24 1 1
[ ( 1) ( 1)]

3 2 2
at a t bt b t    - 

1
[ ( 2) ] ( )

3
a t b at b x t      

(f) x(t)  periodic  implies  y(t)  periodic  determine  1 period only . we have  

               y(t)= 

1

22
1

1
2

1

22
1

1
2

1 1 1
( 1) (1 ) ,

4 2 2

1 3
(1 ) ( 1 ) 3 7 / 4,

2 2

t

t

t

t

t d t d t t t

t d t d t t t

   

   



 




          



          



 

 

 

              The  periodic of y(t)  is 2. 

2.23 Y(t) is sketched  in figure s2.23 for the  different values  of  T. 

Therefore 

2.24 (a)we have given that 2 ( ) ( 1)h n n    . Therefore, 

2 2[ ]* [ ] [ ] 2 [ 1] [ 2]h n h n n n n        

 

 

 

 

 

 

 

0 t 3 3/2 -3/2 -3 

   1/2 

 1 

······ ······ 

T=3/2 y(t) 

 1 
y(t) 

·····

· 

····· 

T=2 

0 1 3 -1 -3 t 
y(t) 

t 0 -2 -1 2 1 

1 T=1 

1 

4 3 0 -1 1 -3 -4 

······· 
··

· 

5 

T=4 

y(t) 

t 
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since 

h[n]= 1[ ]h n *[ 2 2[ ]* [ ]h n h n ] 

       we get  

               h[n]= 1[ ]h n +2h[n-1]+ 1[ 2]h n  

       Therefore 

               h[0]= 1[0]h   1[0]h =1 

               h[1]= 1[1]h + 12 [0]h   1[1]h =3 

               h[2]= 1[2]h + 12 [1]h + 1[0]h   1[2]h =3 

            h[3]= 1[3]h + 12 [2]h + 1[1]h  1[3]h =2 

            h[4]= 1[4]h + 12 [3]h + 1[2]h  1[4]h =1 

            h[5]= 1[5]h + 12 [4]h + 1[3]h  1[5]h =0. 

   1[ ]h n =0 for n<0 and n>=5. 

(b) in this case  

      Y[n]=x[n]*h[n]=h[n]-h[n-1]. 

2.25  (a)we may write  x[n] as    

               x[n]= 
| |1

( )
3

n
   

Now  the desire convolution is  

     y[n]= h[n ]*x[n] 

           =
1

0

(1/ 3) (1/ 4) [ 3] (1/ 3) (1/ 4) [ 3]k n k k n k

k k

u n k u n k
 

  

 

       

By consider each summation in the above equation separately .we may show that  

                y[n]= 

4

4

(12 /11)3 , 4

(1/11)4 , 4

(1/ 4) (1/11) 3(1/ 4) 3(256)(1/ 3) , 3

n

n n n

n

n

n

  


 


 

 

(b) now consider the convolution 

          
1[ ] [ ( 1 / 3 ) [ ] ] * [ ( 1 / 4 ) [ 3 ] ]n ny n u n u n   

      We may show  that  

             1[ ]y n = 
0, 3

3(1/ 4) 3(256)(1/ 3) , 3n n

n

n

 

   

 

   Also consider the convolution 

         2[ ] [(3) [ 1]]*[(1/ 4) [ 3]].n ny n u n u n     

       We   may show  that  

               2[ ]y n   
4(12 /11)3 , 4

(1/ 4) (1/11), 3

n

n

n

n

  


 

 

     Clearly , 1[ ]y n + 2[ ]y n   y[n] obtained in the previous part . 

2.26 (a) we have  

            1[ ]y n = 1[ ]x n * 2[ ]x n =
1 2[ ] [ ]

k

x k x n k




  

                               =

0

(0.5) [ 3 ]k

k

u n k




   

   This evaluates to  

Figure s2.23 
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               1[ ]y n = 1[ ]x n * 2[ ]x n =
42[1 (1/ 2) ], 3

0,

n n

otherwise

   



 

(b) now  

         y[n]= 
3[ ]x n *

1[ ]y n =
1[ ]y n - 1[ 1]y n  

       Therefore 

           y[n]= 

3 4 32(1 (1/ 2) ) 2(1 (1/ 2) ) (1/ 2) , 2

1, 3

0,

n n n n

n

otherwise

        


 



 

               Therefore, y[n]= 
3(1/ 2)n

u[n+3]. 

      (c) we have  

           2 2 3[ ] [ ]* [ ]y n x n x n =u[n+3]-u[n+2]=   [n+3] 

(d) from  the  result of part (c), we get  

          Y[n]= 2[ ]y n * 1[ ]x n = 1[ 3]x n = 
3(1/ 2)n

u[n+3] 

2.27 the proof is  as follows 

Ay= ( ) ( )y t d t


  

  = ( ) ( )x h t d dt  
 

 
   

= ( ) ( )x h t dtd  
 

 
   

= ( ) ( )hx A d 


  

                  =  z hA A   

2.28 (a) causal because h[n]=0 for n<0 stable because 
0

1 5
( )
5 4

n

n





    

      (b)not causal because h[n]  0 for n<0 stable because 

2

(0.8) 5n

n





    

       (c)anti- causal because h[n]=0 for n>0  unstable because 
0

(1/ 2)n

n

   

       (d) not causal because h[n]  0 for n<0 stable because 
3 625

(5)
4

n

n

    

(e) causal because h[n]=0 for n<0  unstable because the second term becomes infinite as n . 

       (f) not causal because h[n]  0 for n<0 stable because 305
| [ ] |

3n

h n




    

（g）causal because h[n]=0 for n<0. stable because 




1][
n

nh  

2.29. (a) causal because h(t)=0for t<0. stable because  


 4/)( 8edtth . 

(b) Not causal because h(t) 0 for t<0. Unstable because 



)(th . 

(c) Not causal because h(t) 0 for t<0. a Stable because 




2/100)( edtth  

(d) Not causal because h(t) 0 for t<0. stable because  


 2/)( 2edtth  

(e) Not causal because h(t) 0 for t<0. stable because 



3/1)( dtth  

(f) Causal because h(t)=0 for t<0. Stable because 



1)( dtth  

(g) Causal because h(t)=0 for t<0. Unstable because 



dtth )(  

2.30. We need to find the output of the system when the input is x[n]=δ[n].Since we are asked to assume initial 
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rest ,we may conclude that y[n]=0. for n<0.now, 

                   y[n]=x[n]-2y[n-1], 

Therefore, 

              y[0]=x[0]-2y[-1]=1,   y[1]=x[1]-2 y[0]= -2,   y[2]=x[2]+2y[2]= -4 

     and so on. In closed form, 

                         y[n]= ).()2( nun  

     this is the impulse response of the system. 

2.31. Initial rest implies that y[n]=0 for n< -2. Now 

                 y[n]=x[n]+2x[n-2]-2y[n-1]. 

     Therefore, 

                 y[-2]=1, y[-1]=0, y[0]=5, y[4]=56, y[0]= -110 for n  5. 

2.32. (a) If ,then we need to verify 

                   A 0
2

1

2

1

2

1
1


















nn

A  

     Clearly this is true. 

(b) We now require that for n 0 

              
nnn

BB 



























3

1

3

1

2

1

3

1
1

 

  Therefore, B= -2. 

(c) From eq.(P2.32-1), we know that y[0]+(1/2)y[-1]=x[0]=1. Now we also have  

             y[0]= A+B => A=1-B=3. 

2.33. (a) (i) From Example 2.14,we have know that  

                 )(
5

1

5

1
)( 23

1 tueety tt









 

 

       (ii) We solve this along the lines of Example 2.14. First assume that )(ty p  is of  the 

Form 
tKe2
 For t>0. Then using eq.(P2.33-1).we get for t>0 

                    2
tKe2
+2

tKe2
=

te2
   => k=

4

1  

          We know that t

p ety 2

4

1
)(   for t>0. We may hypothesize the homogeneous solution to be of the 

form 

                    
t

h Aety 2)(   

Therefore, 

                    tt eAety 22

2
4

1
)(   ,    for t>0 

          Assuming initial rest. we can conclude that =0 for t 0. Therefore, 

                    )(2 ty = 0 = A+
4

1
 => A=

4

1
 

          Then, 

                    )(
4

1

4

1
)( 22

2 tueety tt









   

       (iii) Let the input be   tx3 α )(3 tue t
+β )(2 tue t

 .Assume that the particular solution  )(ty p is of 

the form 

                   )(ty p = 1K α )(3 tue t
+ 2K β )(2 tue t

 

          For t>0. Using eq.(P2.33-1), we get  

             3 1K α )(3 tue t
+2 2K β )(2 tue t

+2 1K α )(3 tue t
+2 2K β )(2 tue t

=α
t3
+β

te2
. 

          Equating the coefficients of 
te3
 and 

te2
. On both sides, we get  

                   1K  =1/5     and      2K =1/4 

          Now hypothesizing that 
t

p ety 2

4

1
)(   , we get 
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                       ty3
5

1
α )(3 tue t

+
4

1
β )(2 tue t

+
tAe 2
 

          For t>0. Assuming initial rest, 

                        ty0 0 = A + α / 5+ β / 4  =>A= -(α / 5+β / 4) 

          Therefore, 

                        ty3 {
5

1
α

te3
+

4

1
β

te2
+

tAe 2
} )(tu  

          Clearly,   ty3 α )(1 ty  +β )(2 ty . 

      (iv) for the input-output pair  tx1 and )(1 ty , we may use eq.(P2.33-1) and the initial rest  

          Condition to write 

                   ),()(2
)(

11
1 txty
dt

tdy
     0)(1 ty  for t< 1t   (S2.33-1) 

For the input-output pair  tx2  and )(2 ty , we may use eq.(P2.33-1) and the initial rest 

condition to write  

          ),()(2
)(

22
2 txty
dt

tdy
     0)(2 ty  for t< 2t  (S2.33-2) 

Scaling eq.(S2.33-1) by α and eq.(S2.33-2) by β and summing, we get  

           ),()()()(2)()( 212121 txtxtytytyty
dt

d
   

And  

          0)()( 21  tyty     for  t<min( 1t , 2t ) 

By inspection, it is clear that the output is   ty3 α )(1 ty  +β )(2 ty  when the input is 

  tx3 α )(1 tx  +β )(2 tx . Furthermore,   ty3 0 for t< 3t , where 3t  denotes 

the time until which 3x (t)=0. 

(b) (i) Using the result of (a-ii), we may write  

                   )(
4

)( 22

1 tuee
K

ty tt   

  (ii) We solve this along the lines of Example 2.14. First assume that )(ty p  is of the form KY
)(2 Tte 
for 

t >T. Then using eq.(P2.33-1), we get for t>T 

             2K
)(2 Tte 
+2 K

)(2 Tte 
= 

te2
  =>  K=1/4. 

     We know that )(ty p =
)(2

4

Tte
K 

 for t<T. We may hypothesize the homogeneous solution to be of 

the form 

               
t

h Aety 2)(  . 

      Therefore, 

               )(22

2
4

)( Ttt e
K

Aety      for t>T. 

      Assuming initial rest, we can conclude the )(2 ty =0 for tT, Therefore,  

               
4

0)( 2

2

K
AeTy T     =>  A= -

4

K Te 2
 

      Then, 
               

)(
44

)( )(2)(2

2 Ttue
K

e
K

ty TtTt 







   

      Clearly, )(2 ty = )(1 Tty  . 

   (iii) consider the input-output pair )(2 tx )(1 ty  where )(1 tx =0 for t< 0t . Note that  

               ),()(2
)(

11
1 txty
dt

tdy
     0)(1 ty  for t< 0t  

      Since the derivative is a time-invariant operation, we may now write 



 32 

               ),()(2
)(

11
1 TtxTty

dt

Ttdy



    0)(1 ty  for t< 0t  

      This suggests that if the input is a signal of the form )()( 12 Ttxtx  , then the output is a signal 

of the form ).(12 Ttyy  Also, note that new output )(2 ty  will be zero for t< 0t +T. This 

supports time-invariance since )(2 tx  is zero for t< 0t +T. Therefore, we may conclude that the 

system is time-invariant. 

2.34. (a) Consider )()( 11 tytx S  and )()( 22 tytx S  .We know that )(1 ty = )(2 ty =1. now 

consider a third input to the system which is )(3 tx = )(1 tx + )(2 tx . Let the corresponding output be 

)(3 ty . Now , note that )1()1(1)1( 213 yyy  . Therefore, the system is not linear. A specific 

example follows. 

            Consider an input signal )(1 tx = )(2 tue t
.Form Problem 2.33(a-ii), we know that the 

corresponding output for t>0 is  

                      
tt Aeety 22

1
4

1
)(   

        Using the fact that )(1 ty =1, we get for t>0 

                      
)1(22

1 )
4

1(
4

1
)(  tt e

e
ety  

        Now. Consider a second signal )(2 tx =0. Then, the corresponding output is  

                      
tBety 2

2 )(   

        For t>0. Using the fact that 1)1(2 y ,we get for t>0 

                      
)1(2

2 )(  tety  

           Now consider a third signal )()()()( 1213 txtxtxtx   .Note that the output will still be 

)()( 13 tyty  for t>0. Clearly, )()()( 213 tytyty  for t>0. Therefore, the system is not linear. 

     (b) Again consider an input signal )()( 2

2 tuetx t . From part (a), we know that the corresponding 

output for t>0 with 1)1(1 y  is  

                      )1(22

1 )
4

1(
4

1
)(  tt e

e
ety  

        Now, consider an input signal of the form )()()( )(2

12 TtueTtxtx Tt   . Then for t>T, 

                      tTt Aeety 2)(2

2
4

1
)(    

        Using the fact that 1)1(2 y  and also assuming that T<1, we get for t<T 

                     )1(2)1(2)(2

2 )
4

1
1(

4

1
)(   tTTt eeety  

        Now note that for t>T. Therefore, the system is not time invariant. 

     (c) In order to show that the system is incrementally linear with the auxiliary condition specified 

as 1)1(1 y , we need to first show that the system is linear with the auxiliary 

Condition specified as 0)1(1 y . 

            For an input-output pair 1( )x t and 1( )y t , we may use eq.(P2.33-1) and the fact that 

0)1(1 y to write  

                   1
1 1

( )
2 ( ) ( ),

dy t
y t x t

dt
      

1(1) 0y    （S2.34-1） 

        For an input-output pair 2 ( )x t and 2 ( )y t , we may use eq.(P2.33-1) and the initial rest condition to 

write  

                  2
2 2

( )
2 ( ) ( ),

dy t
y t x t

dt
        2 (1) 0y   
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        Scaling eq.(S2.34-1) by  and eq.(S2.34-2) by  and summing, we get  

                    1 2 1 2 1 2( ) ( ) 2 ( ) ( ) ( ) ( )
d

y t y t y t y t x t x t
dt

           

        And  

                  
3 1 2(1) (1) (1) 0y y y    

        By inspection, it is clear that the output
3 1 2( ) ( ) ( )y t y t y t    is when the input 

is
3( )x t  1 2( ) ( )x t x t  .Furthermore;

3 1 2(1) 0 (1) (1)y y y   therefore, the system is linear. 

           Therefore, the overall system may be treated as the cascade of a linear system with an adder 

which adds the response of the system to the auxiliary condition alone. 

     (d) In the previous part, we show that the system is linear when (1) 0y  . In order to show that the 

system is not time-invariant, consider an input of the form 2

1( ) ( )tx t e u t . 

        From part(a), we know that the corresponding output will be 

                       2 2

1

1
( )

4

t ty t e Ae   

        Using the fact that 1(1) 0y  , we get for t>0 

                       2 2( 2)

1

1 1
( )

4 4

t ty t e e    

        Now consider an input of the form
2 1( ) ( 1/ 2)x t x t  . Note that

2 (1) 0y  . Clearly, 

        
3

2 1( ) (1 1/ 2) (1/ 4)( ).y t y e e    Therefore, 2 1( ) ( 1/ 2)y t y t  for all t. This implies that the 

system is not time invariant. 

     (e) A proof which is very similar to the proof for linear used in part(c) may be used here. We may show 

that the system is not time invariant by using the method outlined in part (d). 

2.35 (a) since the system is linear, the respond 1(1) 0y  for all t. 

(b) Now let us find the output 2 ( )y t when the input is 2 ( )x t . The particular solution is of the form 

                    ( ) ,py t Y        t> -1 

   Substituting in eq.(P2.33-1),we get  

                    2Y=1. 

   Now, including the homogeneous solution which is of the form 
2( ) t

hy t Ae .we get the overall 

solution 

                  
2

2

1
( )

2

ty t Ae  ,     t > -1 

   Since (0) 0y  , we get  

                  
2

2

1 1
( )

2 2

ty t e   ,   t > -1 

   For t< -1, we note that 2 ( )x t =0. Thus the particular solution is zero in this range and  

                  
2

2( ) ty t Be ,   t > -1 

   Since the tow pieces of the solution for 2 ( )y t in aqs.(S2.35-1)and (S2.35-2)must match at t= -1, we 

can determine B from the equation 

                  2 21 1

2 2
e Be   

   Which yields 

                  2 2( 1)

2

1 1
( )

2 2

ty t e e  
  
 

,    t < -1 

Now note that since x 1 (t)= x 2 (t) for t<-1,it must be true that for a causal system y 1 (t)= y 2 (t) for 

t<-1.However the results of parts(a) and (b) show that this is not true. Therefore ,the system is not causal. 

2.36. Consider an input x
1
[n] such that x

1
[n]=0 for n<n 1 .The corresponding output will be  

                 y 1 [n] =
2

1
 y 1 [n-1]+ x

1
[n],   y 1 [n]=0 for n<n 1 .        (S2.36-1) 
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Also, consider another output x
2
[n] such that x

2
[n] =0 for n<n 2  The corresponding output will be 
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Chapter  3  Answers 
3.1 Using the Fourier series synthesis eq. (3.38) 

             (2 ) (2 ) 3(2 ) 3(2 )

1 1 3 3( ) j T t j T t j T t j T tx t a e a e a e a e    

      

                 (2 8) (2 8) 3(2 8) 3(2 8)2 2 4 4j t j t j t j te e e e         

      6
4cos( ) 8sin( )

4 8
t t

 
   

      3
4cos( ) 8cos( )

4 4 2
t t

  
    

3.2 Using the Fourier series synthesis eq. (3.95) 

       2(2 ) 2(2 ) 4(2 ) 4(2 )

0 2 2 4 4[ ] j N n j N n j N n j N nx n a a e a e a e a e    

       

            
( 4) 2(2 5) ( 4) 2(2 5)1 j j n j j ne e e e        

            4 8
1 2cos( ) 4cos( )

5 4 5 3
n n

   
      

            4 3 8 5
1 2sin( ) 4sin( )

5 4 5 6
n n

   
      

3.3 The given signal is  

             
(2 3) (2 3) (5 3) (5 3)1 1

( ) 2 2 2
2 2

j t j t j t j tx t e e je je          

                 
2(2 6) 2(2 6) 5(2 6) 5(2 6)1 1

2 2 2
2 2

j t j t j t j te e je je          

     Form this we may conclude that the fundamental frequency of x(t) is 2 6 3  . The non-zero Fourier 

series coefficients of x(t)  are  

       0 2a 
  ,  2 2

1

2
a a   ,   

*

5 5 2a a j  
 

3.4 Since 0   , 02 2T    , Therefore, 

            

2

0

1
( )

2

jk t

ka x t e dt   

   Now , 

            

1 2

0
0 1

1 1
1.5 1.5 0

2 2
a dt dt     

and  for 0k   

           

1 2

0 1

1 1
 1.5 1.5

2 2

jk t jk t

ka e dt e dt      

              
3

[1 ]
2

jke
k j





   

              
( 2)3

sin( )
2

jk k
e

k

 



  

3.5 Both 
1(1 )x t and 

1( 1)x t   are periodic with fundamental period 
1

1

2
T






, Since y(t) is a linear combination of 

1(1 )x t  and 
1( 1)x t   ,it is also periodic with fundamental period  

2

1

2
T






, Therefore 
2 1  . 

  Since 
1( ) FS

kx t a  .using the results in Table 3.1 we have  

          1(2 )

1( 1)
jk TFS

kx t a e 
    
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1 1(2 ) (2 )

1 1( 1) ( 1)
jk T jk TFS FS

k kx t a e x t a e  

       

Therefore  

        1 1 1(2 ) (2 )

1 1( 1) (1 ) ( )
jk T jk T j kFS

k k k kx t x t a e a e e a a   

         

3.6 (a) Comparing 1( )x t  with the Fourier series synthesis eq. (3.38) , we obtain the Fourier series coefficients 

1( )x t  to be  

         

1
( ) 0 100
2

0,

k k

k otherwisea

 


 



1( )x t
 

Form Table 3.1 we know that if 1( )x t  is real ,then ka  has to be conjugate-symmetric, 

i.e,  
*

k ka a    Since this is not true for  , the signal is not real valued . 

Similarly , the Fourier series coefficients of 
2 ( )x t   are  

         

cos( ),100 100

0,

k k

k otherwisea

  


 


 

Form Table 3.1 we know that if  2 ( )x t is real ,then ka  has to be conjugate-symmetric, 

i.e,  *

k ka a    Since this is not true for  
2 ( )x t , the signal is  real valued . 

Similarly , the Fourier series coefficients of 
3( )x t   are  

 

sin( 2),100 100

0,

j k k

k otherwisea

  


 


 

Form Table 3.1 we know that if 3( )x t  is real ,then ka  has to be conjugate-symmetric, 

 

i.e,  

*

k ka a    Since this is not true for  

 

 3( )x t , the signal  is  real valued . 

(b)  For a signal to be even , its Fourier series coefficients must be even . This is true only for 2 ( )x t . 

3.7 Given  that  
             ( ) FS

kx t a  

       we have 

              ( ) 2
( ) FS

k k

dx t
g t b jk a

dt T


    

     Therefore , 

              
(2 )

k
k

b
a

j T k


      0k   

When 0k    
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    1 2
( )k

T
a x t dt

T T 
    using given information  

 Therefore , 

     

2
, 0

, 0
(2 )

k

k
T

k

b
k

j T k

a











 



 

3.8    Since x(t) is real and odd(clue 1), its Fourier series coefficients ka are purely imaginary and  odd 

(See Table 3.1) Therefore , 
k ka a  and 0 0a  ,Also since it  is given  that  0ka   for 1k  , the 

only unknown  Fourier  series coefficients are 
1a and 

1a
.Using   Parseval’s  relation 

              
2

21
( ) k

T
k

x t dt a
T



 


   

        for  the given signal we have  

                   
2122

0
1

1
( )

2
k

k

x t dt a



 

     Using the information given in clue (4)  along with the  above  equation , 

         2 2

1 1 1a a         
2

12 1a   

     Therefore  

           
1 1

1

2
a a

j
  

  or  
1 1

1

2
a a

j
   

 

The two possible signals which satisfy the given information are 

 (2 2) (2 2)

1

1 1
( ) 2 sin( )

2 2

j t j tx t e e t
j j

       

and  
    (2 2) (2 2)

2

1 1
( ) 2 sin( )

2 2

j t j tx t e e t
j j

     
 

3.9  The period of the given signal  is  4  .Therefore , 

           
23

4

0

1
[ ]

4

j kn

k

n

a x n e






  2
1

4 8
4

j k

e


 
  

 

 

      This gives  

              
0 3,a     

1 1 2 ,a j     
2 1a   ,    

3 1 2a j   

3.10.  Since the Fourier series coefficients repeat every N , we have  

         
1 15a a  , 

2 16a a   and  
3 17a a  

     Furthermore ,since the  signal is  real and odd ,the Fourier series coefficients 
ka  will 

be purely imaginary and odd . Therefore , 
0 0a     and  

   1 1a a       2 2a a      3 3a a    

Finally  

   1a j        2 2a j       3 3a j    

3.11 Since the Fourier series coefficients repeat every N=10,we have 
1 11 5a a   Furthermore ,since x[n]  is 

real and even , ka  is  also  real and even .Therefore 
1 1 5a a   We  are  also given that  

               
29

0

1
[ ] 50

10 n

x n


   

      Using  Parseval’s   relation , 

                               
2

50k

k N

a
 

  

                                  
28

1

50k

k

a


  

8
2 2 2 2

1 1 0

2

| | | | | | 50k

k

a a a a



     

8
2 2

0

2

| | 0k

k

a a


   



 38 

Therefore  0ka   for k=2 ,….8,   Now  using  the synthesis eq. (3.94) , we have  

     
2 28

10

1

[ ]
j kn j kn

N
k k

k N k

x n a e a e
 

  

    

          

2 2

10 105 5
j n j n

e e
 



  10cos( )
5

n


  

3.12. Using  the multiplication  property  (see Table 3.2 )  , we   have  

          
3

1 2

0

[ ] [ ] FS

l k l l k l

l N k

x n x n a b a b 

  

    

                      
FS  0 1 1 2 2 3 3k k k ka b a b a b a b      

                     
FS

1 2 32 2 2k k k kb b b b      

Since kb  is 1 for all values of k, it is clear that kb +2 1kb +3 3kb will be  for all values of k, Therefore, 

    ,621 FSnxnx   for all k, 

3.13 Let us first evaluate the Fourier series coefficients of  tx .Clearly ,since  tx  is eal and odd, ka is purely 

imaginary and odd Therefore, 0a =0. Now, 

ka  = 



8

0

)8/2()(
8

1
dtetx ktj   

                = 


4

0

)8/2(

8

1
dte ktj  - 


4

0

)8/2(

8

1
dte ktj   

=  kje
kj





1
1  

Clearly, the above expression evaluates to zero or all even values of k Therefore. 

ka =

















5,3,1,
2

4,2,0,0

k
kj

k



 

When  tx is passed through an LTI system with frequency response  jH , the output  ty is given by (see 

Section 3.8) 

   





k

tjk

k ejkHaty 0

0


 

Where 
4

2
0


 

T

, Since ka  is non zero only or odd values of k, we need to evaluate the above summation 

only or odd k, Furthermore ,note that 

    
 
 4

sin
40






k

k
jkHjkH 

 

is always zero or odd values of k, Therefore, 

,0)( ty  

3.14 The signal  nx  is periodic with period N=4, Its Fourier series coefficients are  

 





3

0

4

2

4

1

n

knj

k enxa
  

  ,
4

1
    for all k 

From the results presented in Section 3.8  ,  we know that the output  ny  is given by  

   



3

0

)42()42(

k

njkkj

k eeHany   

=     )2/()2/(0

4

1

4

1  jjj eeHeH   

           +     )()()2/3()2/3(

4

1

4

1  jjjj eeHeeH   

From the given information , we know that  ny  is  

 ny = )
42

5
cos(


n  

   = 
)

42
cos(


n
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            = )
42

()
42

(

2

1

2

1





njnj

ee  

             = )
42

3()
42

(

2

1

2

1





njnj

ee  

Comparing this with eq. (S3.14-1), we have  

0)()( 0  jj eHeH  

And 

,2)( 42


jj

eeH    and  ,2)( 42
3


jj

eeH


  

3.15 From the results o Section 3.8, 

   





k

tjk

k ejkHaty 0

0

  

Where 
12

2
0 

T


 , Since  jH  is zero for 100 , the largest value of |k| or which ka  is nonzero should 

be such that  
100k  

This implies that |k| 8, Therefore , for |k|>8, ka is guaranteed to be zero. 

3.16 (a) The given signal  nx1  is  

  njnjn eenx )22(

1 )1(    

Therefore,  nx1
 is periodic with period N=2 and it’s Fourier series coefficients in the range 10  k  are  

00 a    and   10 a  

Using the results derived in Section 3.8 , the output  ny1
 is given by 

   



1

0

)22(22

1

k

kkj

k eeHany   

 =0 +  jj eeHa )(1
 

= 0, 

(b) The signal  nx2
 is periodic with period N= 16 The signal  nx2

 may be written as  

 nx2
 =  )3)(16/2()4/()3)(16/2()4/()0)(16/2( )2/()2/( jjnjnj eejeeje   

=  )13)(16/2()4/()3)(16/2()4/()0)(16/2( )2/()2/( jjnjnj eejeeje   

Therefore, the non-zero Fourier series coefficients of  nx2
 in the range 150  k  are  

10 a ,   ,)2/( )4/(

3

jeja     

Using the results derived in Section 3.8,the output  ny2
 is given by  

   



15

0

)16(16

2

k

kj

k eeHany  

                             = njjnjj eejeej )3)(16/2()4/()3)(16/2()4/( )2/()2/(0    

= )
4

4

8

3
sin(


n  

(c) The signal  nx3
 may be written as  

         nrngknnunx
k

n *4*)
2

1
(3 













   

where    
1

( )
2

ng n u n and    4
k

r n n k




 
 .Therefore,  3y n may be obtained by passing the signal  r n  

through the filter with frequency response ( )jwH e  , and then convolving the result with  g n . 

 The signal  r n  is periodic with period 4 and its Fourier series confidents are  

1

4
ka  ,  for all k (See Problem 3.14) 

The output  q n  obtained by passing  r n  through the filter with frequency response ( )jwH e  is 

 q n = 3
2 / 4 (2 / 4)

0

( )j k k

k

k

a H e e 




 

0 0 ( / 2) ( / 2) 3( / 2) 3( / 2)(1/ 4) ( ) ( ) ( ) ( )j j j j j j j jH e e H e e H e e H e e          

=0 
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Therefore ,the final output  3y n =  q n *  g n =0 

3.17 (a ) Since complex exponentials are Eigen functions of LTI systems , the input 5

1( ) j tx t e  has to produce 

an output  of the form 5j tAe  , where A is a complex constant . by clearly , in this case the output is not of 

this form. Therefore . systems 
1S  is definitely not LTI. 

(b)This sys tem may be LTI because it satisfies the Eagan function property of LTI systems. 

(c)In the case , the output is of the form 5 5

3( ) (1/ 2) (1/ 2)j t j ty t e e   . Clearly, the output contains a complex 

exponential with frequency –5 which was not present in the input 
3( )x t .We know that an LTI system can 

never produce a complex exponential of frequency –5 unless there was complex exponential of same 

frequency at its input, Since this is not the case in this problem , 
3S  is definitely not LTI. 

3.18 (a)By using an argument similar to the one used 8in part (a ) of the previous problem , we conclude that 

1S  is definitely not LTI. 

(b)The output in this case is   (3 / 2) ( / 2)

2

j n j ny n e e    . Clearly this violates the eigen function property of  

LTI systems . therefore, 
2S  is definitely not LTI. 

(c) the output in this case is   (5 / 2) ( / 2)

3 2 2j n j ny n e e    .This does not violate the eigen function property of  

LTI systems. Therefore,
3S  could possibly be an LTI system. 

3.19 (a)voltage across inductor = ( )dy t
L

dt
. 

Current through resistor = ( )L dy t

R dt
. 

Input current ( )x t  = current through resistor + current through inductor  

Therefore, 

  ( )
( ) ( )

L dy t
x t y t

R dt
 

 

Substituting for R and L we obtain 

 ( )
( ) ( )

dy t
y t x t

dt
   

(b)Using the approach outlined in Section 3.10.1, we know that the output of this system will be ( ) j tH j e   

when the input is 
j te 

.Substituting in the differential equation of part (a), 

( ) ( )j t j t j tj H j e H j e e       

Therefore, 
1

( )
1

H j
j







 

(c)The signal ( )x t  is periodic with period 2  .Since ( )x t  can be expressed in the form  

(2 / 2 ) (2 / 2 )1 1
( )

2 2

j jx t e t e t      

the non-zero Fourier series coefficients of 
( )x t

 are 

1 1

1

2
a a   

Using the results derived in Section 3.8 (see eq.(3.124)),we have  

1 1

/ 4 / 4

( ) ( ) ( )

1 1
(1/ 2)( )

1 1

(1/ 2 2)( )

(1/ 2)cos( )
4

jt jt

jt jt

j jt j jt

y t a H j e a H j e

e e
j j

e e e e

t

 









 

  

 
 

 

 

 

3.20. (a) Current through the capacitor = ( )dy t
C

dt

. 

Voltage across resistor = ( )dy t
RC

dt

. 
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Voltage across inductor = 
2

2

( )d y t
LC

dt
. 

Input voltage = Voltage across resistor + Voltage across inductor + Voltage across capacitor, 

Therefore, 
2

2

( ) ( )
( ) ( )

d y t dy t
x t LC RC y t

dt dt
    

Substituting for R,L and C, we have  
2

2

( ) ( )
( ) ( )

d y t dy t
y t x t

dt dt
    

(b)We will now use an approach similar to the one used in part (b) of the previous problem. If we assume that 

the input is of the form 
j te 

,then the output will be of the form ( ) j tH j e  ,Substituting in the above 

differential equation and simplifying , we obtain  

2

1
( )

1
H j

j


 

  

 

(c)The signal ( )x t  is periodic with period 2 ,Since ( )x t  can be expressed in the form  

(2 / 2 ) (2 / 2 )1 1
( )

2 2

j t j tx t e e
j j

      

the non-zero Fourier series coefficients of 
( )x t

 are 

*

1 1

1

2
a a

j
   

Using the results derived in Section 3.8(see eq.(3.124)), we have  

1 1( ) ( ) ( )

1 1
(1/ 2 )( )

( 1/ 2)( )

cos( )

jt jt

jt jt

jt jt

y t a H j e a H j e

j e e
j j

e e

t









  

 


  

 

 

3.21. Using the Fourier series synthesis eq.(3.38), 
(2 / ) (2 / ) 5(2 / ) 5(2 / )

1 1 5 5

(2 /8) (2 /8) 5(2 /8) 5(2 /8)

( )

2 2

5
2sin( ) 4cos( )

4 4

5
2cos( / 2) 4cos( )

4 4

j T t j T t j T t j T t

j t j t j t j t

x t a e a e a e a e

je je e e

t t

t t

   

   

 

 


 

 

 

   

   

  

   

 

3.22. (a) (i) 0,
)1(

,0,1 0 


 k
k

j
aaT

k

k


 

(ii)Hear,   

            

















212

11,1

12,2

)(

tt

t

tt

tx
 

   T=6, a0=1/2, and 

            









oddk
kk

k

evenk

ak ),
6

sin()
2

sin(
6

,0

22





 

(iii) T=3, a0=1, and 

            0)],3/sin(2)3/2sin([
2

3 3/23/2

22
 kkeke

k

j
a jkjk

k 


  

(iv) T=2, , ak=
1
/2－(-1)

k
, k≠0 

(v)  

          
3/

)3/cos()3/2cos(





jk

kk
ak


  

         Note that a0=0, ak  even=0
.
 

(vi) T=4, ω0=π/2, a0=3/4 and 
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.,
)4/sin()2/cos( 4/2/

k
k

keke
a

jkjk

k 







 

 

(b) kallforee
jk

aT
k

k ],[
)1(2

)1(
,2 1








 

(c) T=3, ω0=2π/3, ,a0=1, and 

)sin()3/2sin(
2 3/

k
k

e
k

k

e
a

jkjk

k 





 

  

3.23.(a)First let us consider a signal y(t) with FS coefficients  

 
Form Example 3.5,we know that * must be a periodic square wave which over one period is  

 
Now , note that * , Let us define another signal * whose only nonzero FS coefficient is * , The signal * will 

have FS coefficients  

 
Now note that * , Therefore , therefore , the signal * which is as shown in Figure S2.23(a). 

 

 

 

 

 

 

错误!错误! 

(b) First let us consider a signal y(t) with FS coefficients 
sin( /8)

2
k

k
b

k




   

From Example 3.5,we know that y(t) must be a periodic square wave which over one period is 
1/ 2,| | 1/ 4

( )
0,1/ 4 | | 2

t
y t

t


 

 

 

Now note that j k

k ka b e  .Therefore, the signal x(t)=y(t+2) which is as show in Figure S2.23(b). 

(c) The only nonzero FS coefficients are 
*

1 1a a j  and 
*

1 2 2a a j  .Using the FS synthesis 

equation ,we got  
(2 / )(2 / ) 2 (2 / ) 2 (2 / )

1 1 2 2( )
j T tj T t j T t j T t

ex t a e a e a e a e
   

      

= (2 / 4) (2 / 4) 2 (2 / 4) 2 (2 / 4)2 2j t j t j t j tje je je je        

= 2sin( ) 4sin( )
2

t t


   

(d) The FS coefficients ak may be written as the sum of two sets of coefficients bk  and ck ,where 

bk=1,for all k 

And 
1,

0,
k

kodd
c

keven


 


 

The FS coefficients bk correspond to the signal 

( ) ( 4 )
k

y t t k




   

and the FS coefficients ck correspond to the signal  

( / 2)( ) ( 2 )j t

k

z t e t k 




   

Therefore, 

( / 2)( ) ( ) ( ) ( 4 ) ( 2 )j t

k k

x t y t p t t k e t k 
 

 

        

3.24.(a) We have 
1 2

0
0 1

1 1
(2 ) 1/ 2

2 2
a tdt t dt      

(a) 

(a) (b) 

 

0 1 2 3  4  5  6  7  8 t 

x(t) 3/4 

(b) 
Figure S3.23 

0   1    2   3 

g(t) 

t 

1 1 

-1 -1 

1/2 x(t) 

0 1  2  3  4  5  6  7  t 

1/2 
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(b) The signal g(t)=dx(t)/dt is show in Figure S3.24 

 

 

The FS coefficients bk of g(t) may be found as follows: 
1 2

0
0 1

1 1
0

2 2
b dt dt     

and  
1 2

0 1

1 1

2 2

j kt j kt

kb e dt e dt      

= 1
1 j ke

j k





  
 

(c) Note that  
( )

( ) FS

k k

dx t
g t b j ka

dt
    

Therefore, 

 2 2

1 1
1 jk

k ka b e
jk k



 

     

3.25.(a) The nonzero FS coefficients of x(t) are a1=a-1=1/2. 

(b) The nonzero FS coefficients of x(t) are b1=
*

1b =1/2. 

(c)Using the multiplication property, we know that  

( ) ( ) ( ) FS

k l k l

l

z t x t y t c a b






     

Therefore, 
1 1

* [ 2] [ 2]
4 4

k k kc a b k k
j j
       

This implies that the nonzero Fourier series coefficients of z(t) are c2=
*

2c =(1/4j) 

(d) We have z(t)=sin(4t)cos(4t)=sin(8t)/2 

Therefore, the nonzero Fourier series coefficients of z(t) are c2=c-2=(1/4j) 

3.26.(a) If x(t) is real. Then x(t)=x*(t).This implies that for x(t) real ak=
*

ka .Since this is not true in this case 

problem, x(t) is not real. 

(b) If x(t) is even ,then x(t)=x(-t) and ak=a-k. Since this is true for this case, x(t) is even. 

(c) We have  

0

( ) 2
( ) FS

k k

dx t
g t b jk a

dt T


    

Therefore, 

| |

0

0, 0

(1/ 2) (2 / ),
k k

k
b

k T otherwise


 



 

Since bk is not even. 

3.27.Using the Fourier series synthesis eq.(3.38), 
2(2 / ) 2(2 / ) 4(2 / ) 4(2 / )

0 2 2 4 4[ ] j N n j N n j N n j N nx n a a e a e a e a e    

       

=
/6 (4 /5) /6 (4 /5) /3 (8 /5) /3 (8 /5)2 2 2j j n j j n j j n j j ne e e e e e e e               

= 2 4cos[(4 /5) / 6] 2cos[(8 /5) /3]n n        

= 2 4sin[(4 /5) 2 /3] 2sin[(8 /5) 5 / 6]n n        

3.28.(a)N=7, 
4 / 71 sin(5 / 7)

7 sin( / 7)

j k

k

e k
a

k

 





  

(b)N=6,ak over period (0 k 5) may be specified as:a0=4/6, 

/ 2

2
sin( )

1 3 ,1 5
6

sin( )
6

j k

k

k

a e k
k






  

 

(c)N=6, 

1 4cos( /3) 2cos(2 /3)ka k k     

Figure S3.24 
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(d)N=12,ak over one period (0  k  11) may be specified as: *

1 11

1

4
a a

j
  , *

5 7

1

4
a a

j
   , 0ka   

Otherwise 

(e) N=4, 
1

1 2( 1) (1 )cos( )
22

k

k

k
a


     

(f) N=12 
1 1 1 5 2

1 (1 )2cos( ) 2(1 )2cos( ) 2(1 )2cos( ) 2( 1) 2cos( )
6 2 6 32 2 2

k

k

k k k k
a

   
         

 

3.29.(a) N=8,Over one period (0 n 7) 

[ ] 4 [ 1] 4 [ 7] 4 [ 3] 4 [ 5]x n n n j n j n            

(b)N=8,Over one period (0 n 7) 
3 3

4 4
7 7

sin{ ( )} sin{ ( )}
1 2 4 3 2 4 3[ ] [

1 12
sin{ ( )} sin{ ( )}

2 4 3 2 4 3

n n
j jn n

e e

x n
n nj

 
   

   

  

 

 

 

(c) N=8,Over one period (0 n 7) 
3

[ ] 1 ( 1) 2cos( ) 2cos( )
4 4

n n n
x n

 
    

 

(d) N=8,Over one period (0 n 7) 
1 3

[ ] 2 2cos( ) cos( ) cos( )
4 2 2 4

n n n
x n

  
     

3.30.(a)The nonzero FS coefficients of x(t) are a0=1,a1=a-1=1/2 

(b)The nonzero FS coefficient FS coefficient of x(t) are b1= 
*

1b = 
/ 4 / 2je 

 

(c)Using the multiplication property, we know that 
2

2

[ ] [ ] [ ] FS

k l k l

l

z n x n y n c a b 



    

This implies that the nonzero Fourier series coefficients of z[n] are c0=cos(  /4)/2, 
* / 4 * / 4

1 1 2 2/ 2, / 4j jc c e c c ee  

      

(d) We have  
2 2 2

[ ] sin( ) sin( )cos( )
4 6 4 6

z n n n
n

    
   

 

= 2 1 4
sin( ) [sin( ) sin( )]

6 4 2 6 4 4
n n

    
   

 

This implies that the nonzero Fourier series coefficients of z[n] are c0=cos( /4)/2, 
* / 4

1 1 / 4jc c e 

   

3.31.(a)g[n] is as show in Figure S3.31.Clearly,g[n] has a fundamental period of 10. 

 

 

 

 

 

 

(b)The Fourier series coefficients of g[n] are bk=(1/10)[1- (2 /10)8j ke  ] 

(c)Since g[n]=x[n]-x[n-1],the FS coefficients ak and bk must be related as  
(2 /10)j k

k k kb a e a   

Therefore, 
(2 /10)8

(2 /10) (2 /10)

(1/10)[1 ]

1 1

j k

k
k j k j k

b e
a

e e



 



 


 

 
 

3.32.(a) The four equations are 

0 1 2 3 0 1 2 31, 0a a a a a ja a ja         

0 1 2 3 0 1 2 32, 1a a a a a ja a ja          

Solving, we got 0a =1/2, 1a = 1

4

j


, 2a =-1, 3a = 1

4

j
  

(b)By direct calculation, 3 / 21
[1 2 ]

4

j k jk

ka e e      

This is the same as the answer we obtained in part (a) for 0 3k   

3.33 We will first evaluate the frequency response of the system. Consider an input x(t) of the form j te  .From 

10 

Figure S3.31 

0 

8 

1 

18 

1 

-1 -1 

n 
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the discussion in Section 3.9.2 we know that response to this input will be ( ) ( ) j ty t H j e  .Therefore, 

substituting these in the given differential equation, we got  

( ) 4j t j t j tH j j e e e       

Therefore, 
1

( )
4

H j
j







 

From eq.(3.124),we know that  

0

0( ) ( )
jk t

k

k

y t a H jk e






 
 

when the input is x(t).x(t) has the Fourier series coefficients ak and fundamental frequency 0 .Therefore, 

the Fourier series coefficients of y(t) are 
0( )ka H jk . 

(a) Here 0 =2  and the nonzero FS coefficients of x(t) are 1 1 1/ 2a a  .Therefore, the 

nonzero FS coefficients of y(t) are  

1 1 1 1

1 1
( 2 ) , ( 2 )

2(4 2 ) 2(4 2 )
b a H j b a H j

j j
 

 
     

 
 

(b) Here, 0 2   and the nonzero FS coefficients of x(t) are 
*

2 2 1/ 2a a j   and 
* / 4

3 3 / 2ja a e 

  .Therefore, the nonzero FS coefficients of y(t) are 

2 2 2 2

1 1
( 4 ) , ( 4 )

2 (4 4 ) 2 (4 4 )
b a H j b a H j

j j j j
 

 
      

 
 

/ 4 / 4

3 3 3 3( 6 ) , ( 6 )
2(4 6 ) 2(4 6 )

j je e
b a H j b a H j

j j

 

 
 



     
 

 

3.34.The frequency response of the system is given by 

4| | 1 1
( )

4 4

t j tH j e e dt
j j


 


 


  

   

(a) Here, T=1 and 0  =2  and 1ka  .for all k. The FS coefficients of the output are 

                         
0

1 1
( )

4 2 4 2
k kb a H j k

j k j k


 
  

 

 

(b) Here, T=2  and 0   and, 

0,

1,
k

keven
a

kodd


 


 

Therefore, the FS coefficients of the outputs are 

0

0,

( ) 1 1
,

4 4

k k

keven

b a H jk
kodd

jk jk



 




  
  

 

 (c) Here, T = 1,w0 =2  and  

                    
     Therefore, the FS coefficients of the output are 

          
3.35  We know that the Fourier series coefficient of y(t) are bk=H(j k w0)ak, 

where w0 is the fundamental  of x(t) and ak, are the FS  

coefficient of x(t). 

  If y(t) id identical to x(t),then bk = ak  for all k. No thing that  

H(j w0)=0 for w  250.We know that H(j k w0)=0 for k  18 

(because w0=14). Therefore ak must be zero for k  18. 

3.36. We will first evaluate the frequency response of the system. Consider an input x[n] of the form 
jwne .From the discussion in Section 3.9 we know that the response to this input will be y[n]=H(e

jw
) 

jwne .Therefore , substituting these in the given difference equation. We get  
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Therefore, 

                 
  Form eq. (3.131), we know that coefficients 

       
when the input is x[n]. x[n] has the Fourier series coefficients ak 

and fundamental frequency 2/N. therefore, the Fourier series coefficients of y[n] are ak 
2 /( )j k NH e 

 

(a) Here, N=4 and the nonzero FS  coefficients of  x[n] are a3 =a
*
3 =1/2j.Therefore,the nonzero  FS  

coefficients of  y[n] are  

 
(b) Here, N=8 and the nonzero FS  coefficients of  x[n] are a1 =a-1 

=1\2 and a2=a-2=1. Therefore, the nonzero  FS  coefficients of  y(t) are      

    
3.37 The frequency response of the system may be easily shown to be  

1 1
( )

1 1 2
1

2

jw

jw
jw

H e
e

e




 




 

(a) the Fourier series coefficients of x[n] are 

ak=1/4, for all k 

Also, N=4. Therefore, the Fourier series coefficients of y[n] are 

        
(b)  In this case, the Fourier series coefficients of x[n] are 

         
Also N=6 . Therefore, the Fourier series coefficients of y[n] are 

       
3.38 The frequency response of the system may be evaluated as  

 
For x[n],N=4 and w0= / 2 . the FS coefficients of input x[n] are 

 ak=1/4, for all k 

     Therefore, the FS coefficients of output are 

           
3.39 Let the FS coefficients of input be ak. the FS coefficients of output are of the form  bk= ak ( )jwH e , 

where w0= 2 / 3 .Note that in the range 0 2k  , ( )jwH e =0 for k=1,2. Therefore, only b0 has a 

nonzero value among bk in the range 0 2k  . 

3.40 Let the FS coefficients of x(t) be ak 

(a)x(t-t0) is also periodic with period T. The FS coefficients bk of x(t-t0) are           

                            

Similarly, the FS coefficients of x(t-t0) are  

                
Finally, the FS coefficients of x(t-t0)+ x(t+t0) are  
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   (b)Note that { ( )} [ ( ) ( )]/ 2v x t x t x t    . the FS coefficients of x(-t) are  

 
Therefore, the FS coefficients of { ( )}v x t  are  

        
2 2

k k k k
k

a b a a
c  
  . 

(c) Note that Re{ ( )}x t =
*[ ( ) ( )]/ 2x t x t . the FS coefficients of 

*( )x t  are  

            
   Conjugating both sides ,we get 

 
        Therefore, the FS coefficients of  Re{ ( )}x t  are  

*

2 2

k k k k
k

a b a a
c  
   

(d) the FS synthesis equation gives  

            
Differentiating both sides wrt t twice ,we get  

 
      By inspection, we know that the FS coefficients of 2 2( ) /d x t dt  are 2

2

4
kk a

T

 . 

(e) The period of (3 )x t  is a third of The period of ( )x t . Therefore, the signal (3 1)x t   is period with 

period T/3. the FS coefficients of (3 )x t  are still ka .Using the analysis of part (a),we know that the 

FS coefficients of (3 1)x t   is (6 / )jk T

ke a  

3.41 Since ka = ka ,we require that x(t)=x(-t).Also, note that since ka = 2ka  . we require that  

                (4 /3)( ) ( ) jk tx t x t e   

   This in turn implies that ( )x t  may have nonzero values only for t=0,


 1.5,


 3,


 4.5,…… 

   Since 0.5

0.5
( ) 1x t dt


 ,we may conclude that ( )x t = ( )t  for -0.5 0.5t  .Also. Since 1.5

0.5
( ) 2x t dt  , we 

may conclude that ( ) 2 ( 2 /3)x t t   in the range 0.5 1.5t  .Therefore ( )x t  may be written as  

           

3.42 (a)From Problem 3.40(and Table 3.1),we know that  FS  coefficients of 
*( )x t  are 

*

ka . Now, we 

know ( )x t  is real, then ( )x t =
*( )x t . Therefore, 

*

k ka a .Note that this implies 
*

0 0a a . 

Therefore, 0a  must be real. 

(b)From Problem 3.40(and Table 3.1), we know that  FS  coefficients of ( )x t  are ka .If  ( )x t  

is even, then  ( )x t = ( )x t .This implies that  

                   
k ka a   

   This implies that  the  FS  coefficients are even. From the previous part ,we know that if x(t) is 

real, then  

                     *

k ka a  

   Using eqs.(S3.42-1) and (S3.42-2), we know that 
*

k ka a . Therefore, ka  is real for all k. Hence, 

we may conclude that ka is real and even. 
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(c) Form Problem 3.40(and Table 3.1), we know that FS  coefficients of ( )x t  are ka .If ( )x t  

is odd, then ( )x t =- ( )x t .This implies that           
k ka a   

   This implies that the  FS  coefficients are odd. From previous part ,we know that if ( )x t  is 

real ,then  

*

k ka a  

        Using eqs. (S3.42-3) and (S3.42-4), we know that 
*

k ka a  . Therefore, ka  is imaginary for all k. 

Hence, we may conclude that ka is real and even. Noting that eq. (S3.42-3)require that 

0 0a a  ,we may also conclude that 0a =0. 

(d) Note that { ( )} [ ( ) ( )]/ 2v x t x t x t    .From the pervious parts, we know that the  FS 

coefficients of { ( )}v x t  ,will be [ ]

2

k ka a .Using eq. (S3.42-2) ,we nay write the FS coefficients 

of { ( )} [ ( ) ( )]/ 2d x t x t x t    .From the previous parts, we known that the FS coefficients of 

{ ( )}d x t  as [ ]

2

k ka a =Re{ ka }. 

(e) Note that { ( )} [ ( ) ( )]/ 2d x t x t x t    . From the pervious parts, we know that the  FS 

coefficients of { ( )}v x t  ,will be [ ]

2

k ka a . Using eq. (S3.42-2) ,we nay write the FS 

coefficients of { ( )}d x t  as [ ]

2

k ka a =jIm{ ka }. 

3.43 (a) (i)We have            

 
        Therefore, 

 

        Since 
jke 

=--1 for k odd 

 
(ii) the Fourier series coefficients of x(t) are  

          
Note that the right-hand side of the above equation evaluates to zero for even values of k if 

. 

   (b)The function is as shown in Figure S3.43. 

Note that T=2 and w0= .Therefore, 

        
   (c)No. For an even harmonic signal we may follow the reasoning of part (a-i) to show that x(t)= x(t+T/2). 

 

 

 

 

 

 

   (d)(1) If 1a  or 1a  is nonzero ,then  

2 /

1( ) j t Tx t a e 

 +….. 

and 02 ( ) /

0 1( )
j t t T

x t t a e
 

  +… 

The smallest value of 0{ }t (other than 0{ }t =0 for which 02 /j t T
e

 =1 is the fundamental period. Only 

-1      0   1     2     3       t 

-1 

x(t) 
1 

Figure s3.43 
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then is  

            2 /

0 1( ) ..... ( )j t Tx t t a e x t

    . 

Therefore, 0t  has to be the fundamental period. 

(2)The period of ( )x t  is the least common multiple of the periods of 0 02 /jk t T
e


. The period of 

(2 / ) /jk T te 
 is T/k and  The period of 

(2 / ) /jl T te 
 and T/l. Since k and l have no common factors, the 

common multiple of T/k and T/l is T. 

3.44 The only unknown FS coefficients are 1a , 1a , 2a and 2a .Since ( )x t  is  real .
1

*

1a a


  and 
*

2 2a a .Since 1a  is real,  1 1a a  .Now, ( )x t  is of the form  

           
1 0 0( ) cos( ) cos(2 )x t A w t w t       

    where 0w = 2 / 6 ,Form this we get  

           
1 0 0 2 0 0( 3) cos( 3 ) cos(2 6 )x t A w t w A w t w        

    Now , if we need 
( ) ( 3)x t tx t  

,then 03w
 and 06w

 should both multiple of  .Clearly, this is 

impossible, 2 2 0a a   and  

                    
1 0( ) cos( )x t A w t  

    Now using Parseval’s relation in Clue 5,we get  

                 2 2 2

1 1

1

2
k

k

a a a






    

    Therefore, 
1a =1/2 .Since 

1a  is positive, we have 
1 1

1

2
a a  . Therefore,  ( ) cos( /3)x t t . 

3.45  By inspection，we may conclude that the FS coefficients of x(t) are  

                

















0,

0,

0,0

kjCB

kjCB

ka

kk

kk
 

(a ) We know from problem 3.42 that if x(t) is real, the FS coefficients of   txv   are Re{ k }therefore, 

              
||00 , kk Baa   

We know from problem 3.42 that if x(t) is real ,the FS coefficients of  d{x(t)} are  kmj   . 

therefore. 

                  










0,

0,
,00

kjC

kjC

k

k

k  

(b) kkkk and     

 (c) the signals is  

                       )()()(1)(
2
1 tzdtzvtxvty    

This is as shown in figure S3.45. 

 

 

 

 

 

 

 

                         Figure S3.45 

3.46 (a)  The Fourier series coefficients of z(t) are  

            



T

n l

tjkwtwnj

lnT
i

k dteebaC 00)1(  

              = 
n l

lnT
ba 1 (k-(n+1)) 

              =
nkn

n

ba   

      (b) (i) Here ,To=3 and 2 /3.therefore  

-1 0 1 2 3 4 

7/2 
5/2 

1/2 1/2 

5/2 

7/2 

3/2 3/2 . . . . . . 
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                   
3/23

3/2sin2

2
1

2
1 3030




k

k

k kkC    

Simplifying 

                
  
 

  
  3/2303

3/230sin

3/2303

3/230sin


















k

k

k

k

kC    

And 30C =1/3. 

        (ii) We may express 2x (t) as  

              2x (t)=sum of two shifted square waves x cos(20 t).  

              Here, To=3, 0 =2 /3. therefore, 
     

 
     

 

     
 

     
  3/230

3/230sin3/230

3
1

3/230

3/230sin3/230

3
1

3/230

3/230sin3/230

3
1

3/230

3/230sin3/230

3
1

































k

kkj

k

kkj

k

kkj

k

kkj

k

ee

eeC
 

(iii) here, To=4, 0 = /2. therefore 

                
kC =     4040

2
1

2
1  kk  *   

  2

0

00

1

0

12

cossin

kw

twtwekwj



 
 

      Simplifying, 

kC =        
   

       
   2

0

00

1

0

2

0

00

1

0

4014

40cos40sin40

4014

40cos40sin40

wk

wkwkewkj

wk

wkwkewkj








 

 

(C) From problom3.42,We know that kb =
*

ka . From part (a),We know that the FS coefficients of 

z(t)=x(t)y(t)=x(t)
*x (t)=

2|)(| tx will be  

                kC =  








 
n n

knnknn baba  

From the Fourier series analysis equation ,We have 

                 kC =  
 










0
0

0

*/22

0

|)(|
1 T

n

knn

ktTj
aadtetx

T

  

Putting k=0 in this equation ,We get 

                   

                   





0

0

22

0

|||)(|
1 T

n

nadttx
T

 

3.47 considering x(t) to be periodic with period1,the nonzero FS coefficients of x(t) are 1a = 1a =1/2. If 

We now consider x(t) to be periodic with period 3, then nonzero FS coefficients of x(t) are 

2/133  bb  . 

3.48 (a) The FS coefficients of x[n- 0n ] are  

           

 

 

k

Nknj

N

n

NnkjN

kw
j

N

N

n

Nnkj

Nk
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enxe

ennxa
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0

/2
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1

1

0

/2

0
1

0

0


































 

       (b) Using the results of part (a).the FS coefficients of x[n]-x[n-1] are given by  

                .1 /2/2

k

nj

k

nkj

kk aeaeaa  


  

       (c) Note the results of part (a). the FS coefficients of x[n]-x[n-N/2] are given by  

               





 


odda

even
aeaa

k

k

kj

kk

,2

,0
]1[   

(d) Note that x[n]+x[n+N/2] has a period of N/2. The FS coefficients of x[n]+x[n-N/2] are given 

by  

                  
k

Nkj
n

n

Nk ae
N

nxnxa 2

/?4

1
2

0

2 2]
2

[][ 







 







   

                 for 0 )12/(  Nk . 
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       (e) The FS coefficients of ][* nx   are 

                *
1

0

/2* ][
1

k

N

n

Nnj

k aenx
N

a  







  

       (f) With N even the FS coefficients of ][)1( nn  are  

              
2/

1

0

)
2

)(/2(
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1

Nk

N

n

N
kNnj

k aenx
N

a 







 


 

       (g) With N odd, the period of ][)1( nn  is 2N. therefore ,the FS coefficients are  

                  Nkj
N

n

Nk

N

n
jN

n

Nk

N

n
j

k eenxenx
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a 








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
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
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2
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0
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2

][][
2

1
 

         Note that for k odd
2

NK  is an integer and k-N is an even integer. Also, for k even ,K-N  is odd 

integer r and 1)(  NKje 
. Therefore, 

                     









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a
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       (h) Here,  

                         ][1(][
2

1
][ nxnxny

n
  

          For N even , 

                         

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          For N odd, 
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3.49  (a) The FS coefficients are given by  
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                     For k even 

 (b) By adopting an approach similar to part (a),We may show that  

                   

0

][1
1

1
4

0

2

2/32/













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
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  

                   For k 4r, r   

(c) If N/M is an integer, We may generalize the approach of part (a)to show that  

                







 






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)1(24 ][1
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nkj
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k enxeee
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  

             Where B=N/M and r=k/m. form the above equation ,it is clear that 

               ,0ka     if k=rM, r   

 

3.49 from Table 3.2,we know that if  

                            x[n] ,k

FS a  

then , 

             
2/

2//2 ][][1 Nk

FSnNNn
anxenx    
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In this case, N =8. Therefore, 

                4[1  k

FSn
anx  

This implies that x[0]=x[ 0]4[]2  x . 

We are also given that .1]7[]3[]5[]1[  xxandxx therefore , one period of x[n] is as 

shown in Figure S3.50 

 

               

 

 

 

 

Figure S3.50 

3.51.we have  

                         
    4

8/24 ][1][][  K

FSnnjnj anxnxenxe 
  

    And therefore , 

                 4

1
][1 


 K

FSn
anx  

     If ,4 kk aa then x[0]=x[ 0]4[]2  x . Now ,note that in the signal p[n]=x[n-1], p 

[ ,0]3[]1  p now let us plot the signal z[n]=(1+   2/)1
n

 . 

This is as shown in Figure S3.51. 

Clearly, the signal y[n]=z[n]p[n]=p[n] because p[n] is zero whenever z[n] is zero. therefore , y[n]x[n-1].the FS 

coefficients of y[n] are 
 2 /8

.
j

ka e


  

3.52 (a)if x[n] is real , x[n]= 
*[ ]x n .therefore, 

                  
2 / *[ ] j nK N

k k

n

a x n e a

   . 

From this result , we get 
k k k kb b andc c   . 

错误! 

 

 

 

 

Figure s3.51 

(b) if N is even then  
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   (C) if N is odd then x[n] is 
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if N is even ,then x[n] is 
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（d)If kj

k ka A e


  ,then cos( )k kb A   and sin( )k kc A   Substituting in the result of the previous 

part ,we get for N odd:   
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( 1) / 2
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2 cos{2 / }

N

k k k

k

N

k k

k

x n a A kn N c kn N

a A kn N

   

 









  

  





 

Similarly, for N even ,  
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  (e)The signal is :  

[ ] . { [ ]} . { [ ]} { } { } 2 { }y n d c x n d c z n v z Od x Od z       
  This is as shown Figure S3.52.  

 

 

 

 
 

3.53.We have 

          (2 / )1
[ ] j N kn
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a x n e
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      

  Note that         
0

1
[ ]

N

a x n
N  
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  Which is real if x[n] is real.   

  (a) If N is even, then   
/ 2

1 1
[ ] [ ]( 1)j n n

N

N N

a x n e x n
N N



   

     

  Clearly, / 2Na  is also real if x[n] is real.   

  (b) If  N  is odd, only ao is guaranteed to be real.   

3.54 (a)Let k =pN, p  .Then,  
1 1 1
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a pN e e N 
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(b)Using the finite sum formula ,we have  
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  (c) Let       
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  Where q is some arbitrary integer .By putting k=pN, we may again easily show that  
1 1 1

(2 / ) 2[ ] 1
q N q N q N

j N pNn j pn

n q n q n q

a pN e e N 
     

  

              

  Now       
1

(2 / ) (2 / )

0

[ ]
N

j N kq j N kn

n

a k e e 




   

  Using part (b), we may argue that a[k]=0 for k pN , p   
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Figure S3.52 
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3.55 (a)Note that   
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0
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               [ / ],

0
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              [ ]mx n  

  Therefore, [ ]mx n  is periodic with mN.   

  (b)The time-scaling operation discussed in this problem is a linear operation. Therefore, if x[n]=v[n]+w[n], 

then [ ] [ ] [ ],m m mx n v n w n   

(c) Let us consider   0 0

1 1
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  This may be written as [From problem 3.54]  
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  Now, also note that by applying time-scaling on x[n],we get  

  
0( 2 / )

[ ]
0

j mN k n

m

e
x n


 


 

  Comparing eps .(s3.55-1)and (s3.55-2),we see that y[n]=   

  (d) We have   
1

(2 / )

0

1
[ ]

mN
j mN kn

k m

n

b x n e
mN








   

we know that only every mth value in the above  summation  is nonzero. Therefore ,  

 
1

(2 / )

0

1
[ ]

N
j mN kmn

k m

n

b x nm e
mN








 
1

(2 / )

0

1
[ ]

N
j N kn

m

n

x nm e
mN








   

    Note that [ ] [ ]mx nM x n .Therefore , 
1

(2 / )

0

1
[ ] / ,

N
j N kn

k k

n

b x n e a m
mN








    

3.56  (a)We have [ ] FS

kx n a  and   
* *[ ] FS

kx n a  

  Using the multiplication property,   
* 2 *[ ] [ ] | [ ] | FS

l l k

l N

x n x n x n a a 

 

    

  (b)From above ,it is clear that the answer is yes.   

3.57.(a)We have   
1 1

(2 / )( )

0 0

[ ] [ ]
N N

j N k l n

k l

k l

x n y n a b e 
 



 

    

  Putting  
'l k l   we get   

'

'

'

( 1) ( 1)
(2 / )

0

[ ] [ ]
N k N

j N l n

k l k
k l k

x n y n a b e 
  


 

    

  But since both 'l k
b


 and  

'(2 / )j N l ne 
 are periodic with  period N, we may rewrite  this as   

            
'

'

'

( 1) 1 1 1
(2 / ) (2 / )

0 0 00

[ ] [ ] [ ]
N N N N

j N l n j N ln

k k l kl k
k l kl

x n y n a b e a b e 
   


  

     

   Therefore ,  
1

0

N

k k l k k

k

c a b c






  

  By interchanging and ,we may show that   

              
1

0

N

k k l k

k

c b a






  

  (b)note that since both  ka  and  kb  are periodic with  period N, we may rewrite  the above  

summation as  

    
k k l k k l k

N N

c a b b a 

   

    

  (c)(i)Here   
1

1
2

0

[ [ 3] [ 3]]
N

k k l

l

c l l N a 






      

      Therefore   1 1
3 32 2k k k Nc a a     

     (ii) period= N. Also   

 1
k N

b  ,for  all  k. 

n=0, 

m …. 

otherwise 

n=0, m …. 

otherwise 

n=0, 
, 2N N 

…. 

otherwise 

n=0, 
, 2N N 

…. 

otherwise 
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Therefore ,  

1

1

0

N

k lN

l

c a




   

(iii) Here    
2 /3 4 /31 [1 ]j k j k

k N
b e e      

Therefore , 
1

2 /3 4 /31

0

[1 ]
N

j l j l

k k lN

l

c e e a 


 





    

   (d)period= 12.Also,   

      
2 10[ ] 1/ 2,FSx n a a      All other 0ka  , 0 11k   

   and   sin7 /121
12 sin /12

[ ] ( )FS k
k k

y n b 


      0 11k   

  Therefore one period of kc  is   

          
sin{7 ( 2) /12} sin{7 ( 10)/12}1

24 sin{ ( 2) /12} sin{ ( 10)/12}
( )[

k k

k k k
c

 

 

 

 
      0 11k   

  (e)Using the FS  analysis   equation .we have   

         (2 / )[ ] [ ] j N kn

l k l

l N N

N a b x n y n e 



   

     

  Putting  k=0  in this , we get   

         [ ] [ ]l l

l N N

N a b x n y n

   

   

  Now Let 
*[ ] [ ]y n x n ,  then 

*

l lb a   Therefore   

         * *[ ] [ ]l l

l N N

N a a x n x n
   

   

  Therefore  2 2| | | [ ] |l

l N N

N a x n
   

   

  3.58 (a) We have   

[ ] [ ] [ ]
L

z n N x r y n N r
 

     

  since y[n] is periodic with  period N, y[n+N-r]= y[n -r],Therefore  

              [ ] [ ] [ ] [ ]
L

z n N x r y n r z n
 

      

  Therefore, z[n] is periodic with  period N.   

  (b) The FS coefficients of z[n] are    

        

2 /1

2 / 2 ( ) /1

1

j nl N

l k n kN

n N k N

j kl N j n k l N

k n kN

k N n N

l lN

l l

c a b e

a e b e

Na Nb

Na b



 





   

  



   









 

   

  (c)Here n=8.the nonzero FS coefficient in the range 0 7k   for x[n] 

are 
*

3 5 1/ 2a a j  . Note that for y[n] ,we need only evaluate 3b  and  5b .  

We have    3 / 4

* 1
3 5 4(1 )je

b b 
   

 Therefore ,the only nonzero FS coefficient in the range 0 7k   for the periodic convolution of these 

signals are 3 3 38c a b  and 5 5 58c a b  

(d) Here 
(3 / 7 / 4)4 (3 / 7 / 4)4

(3 / 7 / 4) (3 / 7 / 4)

1 11
16 1 1

[ ] [ ]
j k j k

j k j k

FS e e
k j e e

x n a
   

   

 

   

 

 
    

And   
8

/ 4

1 (1/ 2)1
8 1 (1/ 2)

[ ] [ ]jk

FS

k e
y n b 




   

Therefore   [ ] [ ] [ ] 8FS

k kz n x n y n a b   

3.59 (a) Note that the signals x(t) is periodic with period NT. The FS  coefficients of x(t) are  

(2 / )1

0
[ [ ] ( )]

NT
j NT kt

k NT
a x p t pT e dt






   
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Note that the limits of the summation may changed in accordance with limits of the integration so that we get   

             
1

(2 / )1

0
0

[ [ ] ( )]
NNT

j NT kt

k NT

p

a x p t pT e dt






   

Interchanging the summation and the integration and simplifying 

     

1
(2 / )1

0
0

1
(2 / )1

0

1
(2 / )

0

[ ] ( )

[ ]

(1/ )[1/ [ ] ].

N NT
j NT kt

k NT

p

N
j N pk

NT

p

N
j N pk

p

a x p t pT e dt

x p e

T N x p e
























 





 





   

Note that the term within brackets on the RHS of  the above equation constitutes the FS coefficients of the 

signal x[n].Since ,this is periodic  with period N, ka  must also be periodic with period N 

 

(b) If the FS coefficients of x(t) are periodic with period N, then 

                               k k Na a  . 

       This implies that 

X(t)=x(t) 
(2 / )j T Nte 

. 

This is possible only if x(t) is zero for all t other then when (2 / )T N = 2 k, where 

k I .Therefore ,x(t) is of the form 

                      [ ] ( / )
k

g k t kT N




  

(c) A simple example would be x(t)= ( )
k

t kT




 . 

3.60 (a) The system is not LTI. (1/ 2)n
 is an eigen function of LTI systems. Therefore, the output should 

have been of the form (1/ 2)nK .Where K is a complex constant. 

     (b) It is possible to find an LTI system with this input-output relationship. The frequency response of 

this system would be ( )jH e 
=(1- (1/2) 

je 
)/(1-(1/4) 

je 
). The system is unique. 

     (c) It is possible to find an LTI system with this input-output relationship. The frequency response of 

this system would be ( )jH e 
=(1- (1/2) 

je 
)/(1-(1/4) 

je 
). The system is unique. 

     (d) It is possible to find an LTI system with this input-output relationship. The system is not unique 

because we only require that 
/8( )jH e =2. 

     (e) It is possible to find an LTI system with this input-output relationship. The frequency response of 

this system would be ( )jH e 
=2.The system is unique. 

     (f) It is possible to find an LTI system with this input-output relationship. The system is not unique 

because we only require that 
/ 2( )jH e 

=2(1- 
/ 2je 

). 

     (g) It is possible to find an LTI system with this input-output relationship. The system is not unique 

because we only require that 
/3( )jH e 

= 1 3j . 

     (h) Note that x[n] and 1y [n] are periodic with the same fundamental frequency. Therefore, it is 

possible to find an LTI system with this input-output relationship without violating the Eigen 

function property. The system is not unique because ( )jH e 
 needs to be have specific values 

only for 
(2 /12)( )j kH e 

.The rest of ( )jH e 
 may be chosen arbitrarily. 

     (i) Note that x[n] and 1y [n] are not periodic with the same fundamental frequency. Furthermore, note 

that 2[ ]y n  has 2/3 the period of x[n].Therefore, y[n] will be made up of complex exponentials 

which are not present in x[n].This violates the eigen function property of LTI systems. Therefore , 

the system cannot be LTI. 

3.61. (a)  For this system, 

           ( ) ( ) ( )x t t x t  . 
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        Therefore, all functions are eigenfunctions with an eigenvalue of one. 

     (b) The following is an eigen function with an eigen value of 1: 

                              
( ) ( )

k

x t t kT 
. 

        The following is an eigen function with an eigen value of 1/2: 

                              1
( ) ( ) ( )

2

k

k

x t t kT  . 

        The following is an eigen function with an eigen value of 2: 

                              ( ) (2) ( )k

k

x t t kT  . 

     (c) If h(t) is real and even then ( )H   is real and even. 

                            ( ) ( )j t j te H j H j e     

        And 

                            ( ) ( ) ( )j t j t j te H j H j e H j e          . 

        From these two statements, we may argue that 

                          1
cos( ) [ ] ( ) ( )cos( )

2

j t j tt e e H j H j t        . 

        Therefore, cos( )t  is an eigenfunction. We may similarly show hat sin( )t  is an 

eigenfunction. 

     (d) We have 

                                   ( ) ( ) ( )t u t t   . 

        Therefore, 

                                   ( ) ( )
t

t d   


  . 

        Differentiating both sides wrt t, we get 

                                   '( ) ( )t   . 

       Let 
0(0)  . Then 

                                 /

0( ) tt e   . 

3.62. (a) The fundamental period of the input is 2T  . The fundamental period of the input is T  .the 

signals are as shown in Figure S3.62. 

    (b) The Fourier series confidents of the output are 

                       
2

2( 1)

(1 4 )

k

kb
k





. 

 

 

 

 

 

 

 

Figure S3.62 

     (c) The dc component of the input is 0. The dc component of the output is 2/ . 

3.63. The average energy per period is 

                       
2

2 2| |2

2

1 1
| ( ) | | | | |

1

k

k

k kT

x t dt a a
T






  


        

We want N such that 

                        
21

2

2
1

1
| | 0.9 .

1

N

k

N

a






 





  

     This implies that 

                        
2 2 2

2 2

1 2 2 1

1 1

N  

 

  


 

. 

     Solving 

0                 2        t 

y(t) 

1 

 

 

 

 

 

-1 

y(t) 

1 

 

 

 

 

 

 

0           2       

t 
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                      2log[1.45 0.95]

2log
N








. 

      And 

                     ( 1)

4 4

N N
W

 
  . 

3.64 (a) Due to linearity, we have 

                            ( ) ( )k k k

k

y t c t  . 

(b) Let 

                  1 1( ) ( )x t y t  and 2 2( ) ( )x t y t . 

   Also, let 

                    3 1 2 3( ) ( ) ( ) ( )x t ax t bx t y t   . 

   Then, 

             
2 ' '

3 1 2 1 2 1 2( ) [ ( ) ( )] [ ( ) ( )] ( ) ( )n ny t t ax t bx t t ax t bx t ay t by t       

Therefore, the system is linear. 

   Now consider 

4 0 4( ) ( ) ( ).x t x t t y t    

       We have 

                    
2

2 0 0
4 02

( ) ( )
( ) ( )

d x t t dx t t
y t t t y t t

dt dt

 
    . 

       Therefore, the system is not time invariant. 

(c) For inputs of the form ( )k t =
kt .The output is 

                          y(t)= 
2 kk t =

2 ( )kk t . 

   The output is 

                          
3 10 4y(t)= 10 3 8t t t   . 

3.65 (a) Pairs (a) and (b) are orthogonal. Pairs (c) and (d) are not orthogonal. 

(b) Orthogonal. But not orthogonal. 
01/mA  . 

(c) Orthogonal. 

(d) We have 

              
0

0 0 0 0

0

( )2
( )

0

[ 1]

( )

j m n
t T

jm jn j m n t

t

e
e e d e

m n


    






  


 . 

This evaluates to 0when m  n and to jT when m=n . Therefore, the functions are orthogonal but not 

orthogonal. 

(e) We have 

2 21 1 1
( ) ( ) [ ( ) ( )][ ( ) ( )] ( ) ( ) 0

4 4 4

T T T T

e o
T T T T

x t x t dt x t x t x t x t dt x t dt x t dt
   

              

(f) Consider 

           # #1 1 1
( ) ( ) ( ) ( )

b b b

k l k l
a a a

k k k l

t t dt t t dt
A A A A

      . 

This valuates to zero for k  l. For k=l, it evaluates to kA / kA =1. Therefore, the functions are 

orthogonal 

 (g) We have 

              2 *| ( ) | ( ) ( )
b b

a a
x t dt x t x t dt   

                        2 ( )
b

i j
a

i

a t dt   

                        * *( ) ( )
b

i j i j
a

i j

a a t t dt    

                        
2| | .i

i

a  
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(h) We have 

          ( ) ( ) ( )i jy T h T d   



   

( ) ( )i j d    



   

1ij for   i = j and 0for i j. 

3.66. (a) We have 

                 * * *[ ( ) ( )][ ( ) ( )]
N Nb

k k k k
a

k N k N

E x t a t x t a t d 
 

     

       Now, let i i ia b jc  . Then 

                      * * *0 ( ) ( ) 2 ( ) ( )
b b

i i i
a a

i

E
t x t dt b t x t dt

b
 


    

   . 

       And 

                      * *0 ( ) ( ) 2 ( ) ( )
b b

i i i
a a

i

E
j t x t dt c j t x t dt

b
 


   

   . 

       Multiplying, the equation by j and adding to the before. We get 

                            *2 2 ( ) ( )
b

i i
a

b jc x t t dt   . 

       This implies that 

*( ) ( )
b

i
a

a x t t dt  . 

(b) In this case, ia  would be 

*1
( ) ( )

b

i
a

i

a x t t dt
A

  . 

 (c) Choosing 

                0
0

0

1
( )

b T
j t

k
b

a x t e dt
T





  , 

   We have 

             0

0

2| ( ) |
N

j kt

k
T

k N

E x t a e dt




   . 

   Putting 0
k

E

a






, we get 

                     0

0
0

1
( )

jk t

k
T

a x t e dt
T


 

. 

(d) 0 2 /a  , 1 3 0a a  , 2 2(1 2 2) /a   , 

4 (1/ )[2 4cos( /8) 4cos(3 /8)]a      . 

(e) We have        
1 1 1

* * * * *

0 0 0
( ( )) [ ( ) ( )] ( ) ( ) ( ) ( )i i i i i i i j i i

i i i i j

a t x t a t dt a x t t dt a a t t dt             

                              * * 0i i i i

i i

a a a a     

(f) Not orthogonal. Example: 
1 1

0 1
0 0

( ) ( ) 1 0t t tdt      . 

(g) Here, 

               
1

*

0 0
0

( ) 1ta e t dt e   . 

(h) Here, x(t)= 0 1a a t . Therefore, 

              
1

0 1 0 1
0
( )( )t tE e a a t e a a t dt     . 

   Setting 0 1/ 0 /E a E a      , we get 0a =c(2e-5) and 1a =6(3-e). 

3.67. (a) From e.g.(P3.67-1) and (P3.67-4), we get 
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2

2 2 2

2

( )1
2 ( )

2

j nt j ntn
n

n n

b x
j nb x e k e

x

 
 

 





  . 

       Equating coefficients of 
2j nte 

 on both sides, we get 

                      
2

2 2

( ) 4
( )n

n

b x j n
b x

x k





. 

cesin  
2s = jn4 /

2k , 

      s=
k

n j 4/2   , 

for n>0, 

s=
k

jn )1(2  , 

is a stable solution. for n<0,  

s=-
k

jn )1(2   

is a stable solution. also, b n (0)=a n  and 

b n (x)=














0,

0,

/)1(2

/)1(2

nea

nea

kxjn

n

kxjn

n





  

(c)b 0 =2,b 1 =(1/2j)e )1( j ,b 1 =-(1/2j)e )1( j , 

T(k 2/ ,t)=2+e  sin(2 t - ) , 

Phase reversed. 

3.68. (a)x( ) =r( ) cos( ) =
2

1
r( ) e

j
+

2

1
r( ) e

 j
.if 

x( ) = 


k

jk

k eb  , 

then b k =(1/2)a 1k +(1/2)a 1k . 

(b) x( ) Fs b k .then x( ) =r( )
4


  .the sketch is as show in Figure s3.68 

(c)b 0 =a 0 .rest of  b k  is all zero. Therefore, the sketch will be a circle of radius a 0  

as shown in figure s3.68. 

(d)(i) r( ) =r )(  ,even. Sketch as shown in figure s3.68. 

  (ii)r( ) k =r( ) .sketch as shown in figure s3.68. 

  (iii)r( )2/ k =r( ) .sketch as shown in figure s3.68. 

3.69.(a) 


N

Nn

kk mn ][][ * = 



N

Nn

mnkn ][][  .this is 1 for k =m and 0 for k .m therefore, 

orthogonal. 

(b)we have  
























1

))(/2(

)(2
)()/2(*

.,

,0
]

1

1
[][][

Nr

rn
mkNj

mkj
mkrNj

mk
mkN

mk

e

e
enn




  

therefore, orthogonal. 

  

 

 

 

 

 

 

(c)we have  

-1 

-1 

1 

1 

0a
 

0a
 

0a
 

0a
 

(b) (c) (d-i) (d-ii) (d-iii) 

Figure S3.68 
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i

M

k

M

i

ii

M

i

kii

N

Nn

N

Nn

M

i

M

k

N

Nn

k

M

i

kik

M

k

kii AakiAaannaanananx

2

1 11

*

1 1

*

1

**

1

*2
][][][][][][

2

1

2

1

2

1

    
     

   

 (d) let 0a then 

               
2 2 2

1 1 1

2

2 2 * *

1 1 1

N N NM M M

i i i i i i i i i

n N i n N i n N i

E x n b c A x n b jc n x n b jc n 
     

             

 Set .0/  ibE then 

              
















 




nnx

A
nnxnnxAb i

N

Nni

N

Nn

iiii

***1
2

1

2

1

Re
1

2   

Similarly, 

    .Im
1 2

1

*









 


N

Nn

i

i

i nnx
A

c 
 

therefore, 

   .
1 *

2

1

nnx
A

jcba i

N

Nni

iii 


  

(e)    .inni   then, 

     .
2

1

ixinnxa
N

Nn

i 


   

3.70  (a) we get  

  .
1

21
0 0

2,1

21

2211
1 2

dtdtttx
TT

a
tjntjm

T T

mn

 

    

(b) (i) .2/1,2/1,,1 1,11121  aaTT  Rest of the coefficients are all zero. 

(ii)here, 

 









otherwise

noddmmn
amn

,0

,,/1 2 . 

3.71 (a)the differential equation    tandftf s  is  

   .
)(

tftf
dt

tdf

K

B
s

s   

The frequency response of this system may be easily shown to be  

 
 

.
/1

1




jKB
jH


  

Note that for   1,0   jH  and for   .0,  jwH Therefore, the system approxima as a 

lowpass filter. 

(b) The differential equation  tandftfd )(  is 

 
 

 
.

dt

tdf
tf

B

K

dt

tdf
d

d   

The frequency response of this system may be easily shown to be 

 
 

.
/ BKj

j
jH







  

Note that for   0,0   jH  and for   .1,   jH Therefore, the system 

Approximates a highpass filter 
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Chapter 4 Answers 

4.1 (a)Let      .112   tutx t then the Fourier transform    tofxjx   is : 

     

   







jdt

dttujX

jtjt

tjt





















2/

1

1

12

12





 

 jX  is as shown in figure s4.1. 

(b) Let   .
12 


t

tx  then the Fourier transform    tofxjX   is : 

     

     2

1
12

1

1212

4/42/2/ 




























jjj

tjttjttjt

jj

dtdtdtjX




 

 jX  is as shown in figure s4.1 

 

 

 

 

 

4.2 (a) Let      .111  tttx  then the Fourier transform    tofxjX 1
 is : 

         cos2111  



jjtj dtttjX   

 jX1
 is as sketched in figure s4.2. 

(b)the signal      222  tututx  is as shown in the figure below .Clearly, 

        2222  tttutu
dt

d
  

Therefore  

         

)2sin(2

)]2()2([)(

22

2









j

ee

dtettjx

jj

tj
















 

)(1 jx  is as sketched in figure s4.2. 

                       

 

 

 

 

 

4.3  (a) the signal )4/2sin()(1   ttx  is periodic with a fundamental periodic of T=1. 

This translations to a fundamental frequency of  20   .the nonzero Fourier series coefficients of this 

signals of this signal may be found by writing it in the form  

        

tjjtjj

tjtj

ee
j

ee
j

ee
j

tx





2)4/2)4/

)4/2()4/2(

1

2

1

2

1

)(
2

1
)(








 

  therefore, the nonzero Fourier series coefficients of )(1 tx are  

  tjjtjj ee
j

aee
j

a  2)4/

2

2)4/

1
2

1
,

2

1   

Form Section 4.2 we know that for periodic signals, the Fourier transforms consists of train of impulse 

occurring at 0k .Furthermore, the area under  each impulse is 2  times the Fourier series coefficients 

 jX
 

  

1/2 

0 
  

0 

2 

(a) (b) 

 jX
 

 2X j

 2 

0       

figure s4.1 

3 / 2  / 2  / 2  3 / 2  

2 

 1  X j

 

  
figure s4.2 
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ka .Therefore, for 1( )x t  the corresponding Fourier transforms 1( )x j  is given by         

                 
1 1 0 1 0( ) 2 ( ) 2 ( )x j a a             

                        / 4 / 4( / ) ( 2 ) ( / ) ( 2 )j jj e j e             

(b) The signal 2( ) 1 cos(6 /8)x t t    is periodic with a fundamental period of  1/3T    .This translates to a 

fundamental frequency of  0 6    .The nonzero Fourier series coefficients of this signal may be found by 

writing it in the form     

(6 /8) (6 /8)

2

1
( ) 1 ( )

2

j t j tx t e e         

     /8 6 /8 61 1
1

2 2

j j t j j te e e e        

Therefore  ,The nonzero Fourier series coefficients of  2 ( )x t  are   

                   /8 6 /8 6

0 1 1

1 1
1, , .

2 2

j j t j j ta a e e a e e    

    

Form Section 4.2 we know that for periodic signals, the Fourier transforms consists of train of impulse 

occurring at 0k  .Furthermore, the area under  each impulse is 2    times the Fourier series coefficients  

ka
 .Therefore, for  2 ( )x t

  the corresponding Fourier transforms 2 ( )x j
 is given by  

                   
2 0 1 0 1 0( ) 2 ( ) 2 ( ) 2 ( )x j a a a                 

                          /8 /82 ( ) ( 6 ) ( 6 )j je e                

4.4 (a) The inverse Fourier transforms is  

            
1( ) (1/ 2 ) [2 ( ) ( 4 ) ( 4 )] jwtx t e d         





      

                4 4(1/ 2 )[2 ]j t j t j te e e          

                
4 41 (1/ 2) (1/ 2)

1 cos(4 )

j t j te e

t

 



  

 
 

  (b) The inverse Fourier transforms is  

2 2( ) (1/ 2 ) ( ) jwtx t X jw e dw




 
 

     
2 0

0 2

(1/ 2 ) 2 2jwt jwte dw e dw


   
 

     2 2( 1) /( ) (1 ) /( )j t j te jt e jt      

     
2(4 sin ) /( )j t t   

4.5 Form the given information     

                   ( ) (1/ 2 ) ( ) jwtx t X jw e dw




 
 

 ( )
(1/ 2 ) ( )

jwj X e wt jwX jw e e dw






 
 

3

2/3

3

(1/ 2 ) 2 w jwe e dw  



 
 

2
sin[3( 2 / 3)]

( 2 / 3)
t

t
 



 

The signal 
( )x t

 is zero when3( 2 / 3)t   is a nonzero integer multiple of   this gives  

                 2 / 3, 0
2

k
t fork Iandk


       

4.6. Throughout this problem ,we assume that  

x(t) 
FTX1(j ) 

(a) Using the time reversal property (Sec. 4.3.5), we have 

x(-t) 
FTX1(-j ) 

Using the time shifting property (Sec. 4.3.2) on this, we have 

x(-t+1) 
FT  

j te 
X1(-j )   and x(-t-1) 

FT  
j te 

X1(-j ) 

therefore  
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x1 (t)= x(-t+1)+ x(-t-1) 
FT j te 

X1(-j )+
j te 

X1(-j )
FT2 X(-j )cos  

(b) Using the time scaling property (Sec. 4.3.5), we have 

x(3t) 
FT1/3X(j /3) 

Using the time shifting property on this, we have  x2 (3(t -2)) 
FT 2 je 

1/3X(j /3) 

(c) Using the differentiation in time property (Sec. 4.3.4), we have  ( )dx t

dt

FT ( )j X j   

Applying this property again, we have 
2

2

( )d x t

dt

FT 2 ( )X j   

Using the time shifting property, we have x3=
2

2

( 1)d x t

dt

 FT 2 ( )X j 
j te 

 

4.7 (a)Since X1(-j ) is not conjugate symmetric ,the corresponding signal x1 (t) is not real  

Since X1(-j ) is neither even nor odd ,the corresponding signal x1 (t) is neither even nor odd 

(b) the FT of a real and odd signal is purely imaginary and odd. therefore ,we may conclude that the FT of a 

purely imaginary and odd signal is real and odd . since X2(j )is real and odd we may therefore conclude 

that the corresponding signal x2(t) is purely imaginary and odd. 

(c) Consider a signal y3 (t) whose magnitude of the FT is | 
3( )Y j |=A( ),and whose phase of the FT is 

3{ ( )} 2Y j  . Since | 3( )Y j | and 
3{ ( )}Y j =-

3{ ( )}Y j ,we may conclude that the signal y3 (t) is real  

(d) Since X4(j ) is both real and even , corresponding signal x4 (t) is real and even 

4.8 (a)The signal x(t) is as shown in Figure S4.8. 

 

 

We may express this signal as  

( )x t  ( )

t

y t dt


   

Where y (t) is the rectangular pulse shown in S4.8 Using the integration property of FT we have  

x(t) 
FTX(j ) = 1

( ) ( 0) ( )Y j Y j
j

   



 

we know from 4.2 that  

( )Y j = 2sin( / 2)w

w

 

Therefore X(j )= 
2

2sin( / 2)
( )

w

jw
   

(b) if g(t)=x(t)-(1/2) ( )  = 
2

2sin( / 2)w

jw

 

4.9 (a) the signal x(t) is plotted in figure S4.9 

x(t)= ( ) ( 1/ 2)

t

y t dt u t


   

using the result obtain ed in part (a) of the previous problem ,the FT X(j )of x(t) is  

X(j )=
2

2sin( / 2)
( )

w

jw
  -FT{u(t-1/2)}= 

2

sin je

j j



 



  

(b) the even part of x(t) is given by  

{ ( )}v x t =(x(t)+x(-t))/2 

This is as shown in the 4.9 

Therefore  
sin

{ { ( )}}FT v x t





  

Now the real part of answer to part (a) is  

1 sin
Re{ } Re{ (cos sin )}

je
j j j

j

 
 

  
     

(c) the FT of the odd part of x(t) is same as j times imaginary part of the answer to part (a),we have  

2 2

sin sin cos
Im{ }

je

j j

  

   



     

Therefore ,the desired result is  

 

y(t) 
1/2 

   t     1     -1 t 

x(t) 

  1   -1 

    1 

1 

x(t) 

1/2 -1/2 t 

1 

-1/2 1/2 t 

y (t) 

Figure S4.8 
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FT{Odd part of x(t)}= 
2

sin cos

j j

 

 
  

4.10（a） we know from table 4.2 that  

                sin FTt

t
Rectangular  function y( j ) [  see figure s4.10] 

Therefore 

       2sin
( ) FTt

t
(1/2 )[ Rectangular  function y( j )*Rectangular  function y( j )] 

This is a triangular function 1( )y j  as show in the figure s4.10 

 

 

 

 

 

 

Using table 4.1 we may write  

                t sin
( ) FTt

t
x( j )=j 1( )dy j

d




 

    this is as show in the figure above .x( j ) may be expressed mathematically as  

         x( j )=
/ 2 , 2 0

/ 2 ,0 2

0,

j

j

otherwise

 

 

  

  



 

     (b) using Pareseval’s relation  

              2 4sin
( )

t
t dt

t




= 21

| ( ) |
2

x j d 





= 

3

1

2
 

4.11 We know that  
1 1

(3 ) ( ), (3 ) ( )
3 3 3 3

FT FTx t X j h t H j
 

   

Therefore, 
1

( ) { (3 )* (3 )} ( ) ( )
9 3 3

G j T x t h t X j H j
 

  F  

Now note that 

( ) { ( )* ( )} ( ) ( )Y j T x t h t X j H j   F  

From this we may write 

( ) ( ) ( )
3 3 3

Y j X j H j
  

  

Using this in eq.(**),we have 
1

( ) ( )
9 3

G j Y j


 
 

and                 1
( ) (3 )

3
g t y t

 

Therefore, A=1/3 and B=3. 

4.12 (a) From Example 4.2 we know that 

| |

2

2

1

FTte


 


 

Using the differentiation in frequency property, we have 

| |

2 2

2 4

1 (1 )

FTt d j
te j

d



  

   
 

 

(b) The duality property states that if  

( ) ( )FTg t G j  

then  

( ) 2 ( )FTG t g j   

Now since 

| |

2

4

(1 )

FTt j
te





 


 

we may use duality to write 

Y(
j

 ) 
1 

1 -1 0 

 



 
-j/2   

X(
j

 

) 
0 

  -2 

j/2   

Figure S4.10 

  -2   2 

 

Y1(
j

 ) 

0 

1/   
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| |

2 2

4
2

(1 )

FTjt
e

t

  


 

Multiplying both sides by j, we obtain 

| |

2 2

4
2

(1 )

FTt
j e

t

 


 

4.13 (a)Taking the inverse Fourier transform of X(j ),we obtain 

51 1 1
( )

2 2 2

j t j tx t e e

  
    

The signal x(t) is therefore a constant summed with two complex exponentials whose fundamental frequencies 

are 2 /5rad/sec and 2 rad/sec, These two complex exponentials are not harmonically related. That is ,the 

fundamental frequencies of these complex exponentials can never be integral multiples of a common 

fundamental frequency . Therefore, the signal is not periodic. 

(b)Consider the signal y(t)=x(t)*h(t).From the convolution property, we know that 

Y(j )=X(j )H(j ).Also ,from h(t),we know that 
2sin

( ) jH j e  




  

This gives   51 1
( )

2 2

j ty t e
 

   

Therefore, y(t) is a complex exponential summed with a constant. We know that a complex exponential is 

periodic. Adding a constant to a complex exponential does not affect its periodic. Adding a constant to a 

complex exponential does not affect its periodicity. Therefore, y(t) will be a signal with a fundamental 

frequency of 2 /5. 

(c) From the Fourier transform of parts (a) and (b),we see that the answer is yes. 

4.14Taking the Fourier transform of both sides of the equation 
1 2{(1 ) ( )} 2 ( )tj X j A u t   F  

we obtain 
1 1

( ) { }
(1 )(2 ) 1 2

A
X j A

j j j j


   
  

   

 

Taking the inverse Fourier transform of the above equation 
2( ) ( ) ( )t tx t Ae u t Ae u t    

Using Parseval’s relation, we have 
2 2| ( ) | 2 | ( ) |X j d X t dt  

 

 
 

 

Using the fact that 2| ( ) | 2X j d  





,we have 

2| ( ) | 1X t dt





 

Substituting the previously obtained expression for x(t) in the above equation, we have 
2 2 2 4 2 3

0

2

[ 2 ] 1

/12 1

12

t t tA e A e A e dt

A


    



  

   

We choose  A  to be 12  instead of 12  because we know that x(t) is none negative. 

4.15. since x(t) is real. 

Ev{x(t)}= ( ) ( )
Re{ ( )}

2

FTx t x t
X jw

 
  

We are given that 

               IFT{Re {X(jw)}}=|t|e
| |t

 

Therefore 

        Ev{x(t)}= | |( ) ( )
| |

2

tx t x t
t e 

  

We also know that x(t)=0 for t 0 .this implies that x(-t) is zero for t>0. we may conclude that  

x(t)=2|t|e
| |t

  for t 0  

therefore   x(t)=2te
t
u(t) 

4.16 (a)  we may write 

                    x(t)  =  sin( / 4)
( / 4)

/ 4

sin( )
( / 4)

k
t k

k

t
t k

t


 



 












 




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Therefore，g(t) = ( / 4)t k 




  

  (b) Since g(t) is an impulse train , its Fourier transform G(jw) is also an impulse train  

     From Table 4.2, 

                   
2 2

( ) ( )
/ 4 / 4

8 ( 8 )
k

k
G j

k

 
   

 

  









 

 





 

We see that G(jw) is periodic with a period of 8.Using the multiplication property, 

We know that 

           1 sin
( ) [ { }* ( )]

2

t
X j FT G j

t
 

 
  

If we denote sin
{ }

t
FT

t
 by A(jw),then 

( ) 1/ 2 [ ( )*8 ( 8 )]

4 ( 8 )

k

k

X j A j k

A j k

     











 

 





 

( )X j  may thus be viewed as a replication of  4A(jw) every 8 rad/sec. this is obviously 

Periodic. 

Using Table 4.2 , we obtain 

    
( )A j   

Therefore, we may specify X(jw) over one period as  

   4 ,  |w| 1 

X(jw)=    0, 1<|w| 4 

4.17. (a) From Table 4.1 ,we know that a real and odd signal signal x(t) has a purely imaginary and odd Fourier 

transform X(jw). Let us now consider the purely imaginary and odd signal jx(t) ,using linearity ,we obtain the 

Fourier transform of this signal to be jX(jw) . The function jX(jw) will clearly be real and odd. Therefore, the 

given statement is false. 

(b) An odd Fourier transform corresponds to an odd signal, while an even Fourier transform 

  Corresponds to an even signal. .The convolution  of an even Fourier transform with an  

odd Fourier may be viewed in the time domain as a multiplication of an even and odd signal Such a 

multiplication will always result in a an odd time signal .The Fourier transform of this odd signal will always 

be odd ,Therefore ,the given statement is true. 

4.18. Using Table 4.2, we see that the rectangular pulse 1( )x t  shown in Figure S4.18 has a Fourier transform 

X1(jw) = sin(3w)/w. Using the convolution property of the Fourier transform, 

We may write  

            x2(t)=
sin(3 ) 2

1 1 2 1 1( )* ( ) ( ) ( ) ( ) ( )
wFT

w
x t x t x jw x jw x jw    

 The signal x2(t) is shown in Figure S4.18. Using the shifting property ,we also note that 

                   
s i n ( 3 )21 1

22 2
( 1) ( )

wFT j

w
x t e    

And 
sin(3 ) 21 1

22 2
( 1) ( )FT jx t e





   

Adding the two above equation ,we obtain  

              
sin(3 ) 21 1

2 22 2
( ) ( 1) ( 1) cos( )( )FTh t x t x t




      

The signal h(t) is as shown in Figure S4.18 .we note that h(t) has the given Fourier transform  H(jw) 

 

 

 

 

 
 

 

Mathematically h(t) may be expressed as  

              5
4

,               |t|<1 

            -
| | 3
4 2

t
 ,           1 | | 5t   

               
| | 7
8 8

t
             5 | | 7t   

1,   |w| 1 
0,   otherwise 

   1/2 1( )x t
 

-3 0 3 
t 

s/2 
x2(

t) 

-6 0 6 t 

h(t)= 

h(t) 5/4 

1/4 

-7 -5 0 5 7 t 

Figure S4.18 
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             0                 otherwise 

4.19 we know that  

                 ( )

( )
( ) .

Y j

X j
H j




   

 Since it is given that 
3 4( ) ( ) ( )t ty t e u t e u t   , we can compute Y(jw) to be 

                  1 1 1
3 4 (3 )(4 )

( )
j j j j

Y j
   


   

    

   Since H(jw) = 1/(3+jw), we have 

                   X(jw)=
( )

( )
1/(4 )

Y j

X j
j




   

   Taking the inverse Fourier transform of X(jw), we have  
4( ) ( )tx t e u t  

4.20 From the answer to Problem 3.20 we know that the frequency response of the circuit is 

                      H(jw)= 2

1

1w j  
 

Breaking this up into partial fractions, we may write  

3 31 1
2 2 2 2

1 1 1

3
( ) [ ]

j j j j j
H j

 
  

   
  

 

             
3 31 1

2 2 2 2
( ) ( )1

3
( ) [ ] ( ).

j t j t

j
h t e e u t

   
     

Simplifying , 

               h(t) = 
1
2 32

23
sin( ) ( ).

t
e t u t


 

4.21. (a)  The given signal is  

                      

0 01 1
0 2 2

cos( ) ( ) ( ) ( )
j t j tat at ate t u t e e u t e e u t
     

 

   Therefore . 

             X(jw) = 

2 2
0 0 0

1 1
2( ) 2( ) ( )

j

j j j j j

 

        



     
 

 

(b). the given signal is  

           

x(t)

3 3sin(2 ) ( ) sin(2 ) ( ).t te t u t e t u t  
 

   we have 

          

2

1/ 2 1/ 23 2
1 1 3 2 3 2 (3 ) 4
( ) sin(2 ) ( ) ( )

j jFTt

j j j j j
x t e t u t X j

  


     
      

     Also  

          
1/ 2 1/ 23

2 1 2 1 3 2 3 2
( ) sin(2 ) ( ) ( ) ( ) ( )

j jFTt

j j j j
x t e t u t x t X j X jw

 


   
            

     Therefore 

             X(jw)= 2 2

3 3

1 2 9 ( 2) 9 ( 2)
( ) ( )

j j
X j X j

 
 

   
  

. 

(c) Using the Fourier transform analysis equation (4.9) we have 

Using the Fourier transform pairs provided in Table 4.2, we obtain the Fourier transform of H(jw) to be 
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2

2 2

sin( ) sin( )2sin 2 sin

( )
( )X j

   
       


  

   
 

                 1

1
( ) j Te

X j 
 

  

(e) we have 
                2 4 2 4( ) (1/ 2 ) ( ) (1/ 2 ) ( )t j t t j tx t j te e u t j te e u t     

Therefore 

              
2 2

1/ 2 1/ 2

(2 4 ) (2 4 )
( )

j j

j j j j
X j

 


   
   

(f). We have         sin
1 1( ) ( )FTt

t
x t X j


    



 

otherwise0

||1   

Also      
sin2 ( 1)

2 2( 1)
( ) ( )

t FT

t
x t X j







  



 

otherwise

e

0

2||2 

 

               1
1 2 1 22

( ) ( ) ( ) ( ) { ( )* ( )}FTx t x t x t X j X j X j


      

Therefore , 
             je                  

           (1/ 2 )(3 ) , 3je w          

             (1 / 2 ) ( 3 )je     , 3     

           0                  otherwise 

(g)  Using the Fourier transform analysis eq. (4.9) we obtain 

                         
2 sin( ) cos2

j

w
X j 


     

if 

                        
1( ) ( 2 )

k

x t t k




  , 

Then 

                    X(t)=
1 12 ( ) ( 1)x t x t  . 

Therefore 

           
1( ) ( )[2 ] ( )[2 ( 1) ].kX j X j e k     






       

Using the Fourier transform analysis eq.(4.9) we obtain 

                        2 2

2 2 21( )
j je e

j j
X j

 

  


  


    

x(t) is periodic with period 2 therefore . 

                       ( ) ( ) ( )
k

X j X jk k     




   

Where X(jw) is the fourier transform of one period of x(t) .that is  

            
2 2(1 )2(1 )

2

[1 ]11
1 11

( ) [ ]
jj e ee

j je
X j



 


   




 

   

4.22. (a)  



 


otherwise

te
tx

tj

0

3||
)(

2

 

(b) x(t)=
/3 /31 1

2 2
( 4) ( 4)j je t e t       

the Fourier transform synthesis eq.(4.8) may be written as  

                   ( )1
2

( ) ( ) j X j j tx t X j e e d 


 




   

      From the given figure we have  

                   2

sin( 3) cos( 3) 11
3 ( 3)

( ) [ ]
t t

t t
x t



  

 
   

x(t) =
2 3sin cos(2 )

j
t t

 
  

Using the Fourier transform synthesis equation (4.8) , 

            2

cos3 sin sin 2( ) t t t
j t j t

x t
 

   

4.23. For the given signal 0 ( )x t , we use the Fourier transform analysis eq.(4.8) to evaluate the corresponding 

Fourier transform 

X(jw)= 

(d) Using the Fourier transform analysis equation (4.9) we have 
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(1 )1
0 1
( )

je
j

X j





 



 

we know that  

                                 1 0 0( ) ( ) ( )x t x t x t    

              Using the linearity and time reversal properties of the Fourier transform we have 

                    

1 1

2

2 2 cos 2 sin
1 0 0 1
( ) ( ) ( ) e eX j X j X j   


  

  


   

    

（ii）we know that  

               
)()()( 002 txtxtx 

 

Using the linearity and time reversal properties of Fourier transform we have  

     2

11

002
1

cos2sin22
)()()(











 ee
jXjXjX  

（iii）we know that 

                )1()()( 003  txtxtx  

Using the linearity and time shifting properties of Fourier transform we have 

2

11

003
1

cos2sin22
)()()(




 






 ee
jXejXjX j

 

（iv）we know that 

            
)1()()( 003  txtxtx

 

Using the differentiation frequency property )()( 04 


 jX
d

d
jjX   

Therefore, 

2

1

4
)1(

1
)(








j

ej
jX

j








 

4.24 (a) (ii) For Re{X(j )} to be 0, the signal x(t) must be real or odd. Therefore  , signals in figures (a) and 

(c) have this property. 

(ii) For Im{ X(j )} to be 0, the signal x(t) must be real or even. Therefore  , signals in figures (e) 

and (f) have this property. 

(iii)For these exist a real α such that )(  jXe j
 is real ,we require that x(t+α) be a real and 

even signal. Therefore , signals in figures(a),(b),(c),(d),and (f) have this 

property. 

(iv) For the condition to be true ,x(0)=0,.Therefore ,signals in figures 

(a),(b),(c),(d),and (f)have this property. 

(v) For the condition to be true the derivative of x(t) has to be zero at t=0 .Therefore , 

signals in figures (b),(c),(e),and (f)have this property. 

(vi) For this to be true , the signals x(t) has to be periodic .Only the signals in figures 

(a) has this property. 
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(b)For signal to satisfy only properties (i),(iv),and (v),it must be real and odd ,and  

x(t)=0 , 0)0( x   

the signal shown below is example of that. 
 

 

 

 

 

 

 

 

 

 

 

4.25  (a) Note that y(t)=x(t+1) is a real and even signal. Therefore , )( jY  is also real and even .this implies 

that )( jY =0.Also ,since )()(   jXejY j ,we know that         )( jY  

(b) we have 





 7)()0( dttxjX  

(c)we have  

         



  4)0(2)( xdjx  

(d) Let 




 jejY 2sin2

)( . The corresponding signal y(t) is 


otherwize

t
ty

,0

13,1
)(


  

Then the given integral is 





   7)}(*)({2)()( 0ttytxdjYjX  

(e) we have  

 26)(2)(
2

2
 








dttxdjX  

(f)The inverse Fourier transform of )}({ jXe is the )}({ txv which is [x(t)+x(-t)]/2.this is as shown is 

the figure below. 

4.26  (a)  (i) We have 

            
22 )2(

)4/1(

4

)4/1(
]

4

1
][

)2(

1
[)()()(




jjjj
jHjXjY








  

Taking the inverse Fourier transform we obtain 

)(
2

1
)(

4

1
)(

4

1
)( 224 tutetuetuety ttt    

(ii) We have 

2222 )4(

)4/1(

4

)4/1(

)2(

)4/1(

2

)4/1(
]

)4(

1
][

)2(

1
[)()()(




jjjjjj
jHjXjY


















  

Taking the inverse Fourier transform we obtain 

)(
4

1
)(

4

1
)(

4

1
)(

4

1
)( 4422 tutetuetutetuety tttt    

(iii) We have 




jjjj
jHjXjY










1

2/1

1

2/1
]

1

1
][

1

1
[)()()(

 

Taking the inverse Fourier transform we obtain  

t
ety




2

1
)(  

(b) By direct convolution of x(t) with h(t) we obtain  

)}({ txv
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


















5,

51,1

1,0

)(
)1()5(

)1(

tee

te

t

ty
tt

t  

Taking the Fourier transform of y(t), 

)()(
)2sin(2

]
1

[
)1(

)2sin(2
)(

23













jHjX
e

j

e

j

e
jY

jjj










 

4.27 (a) The Fourier transform X( j ) is 

       

2/3
3

2

2

1
}1{

)2/sin(
2)()( 




 jjtjtjtj eedtedtedtetxjX 





    

(b) The Fourier series coefficients ak are 

    2/3
3

2

2
2

1

22

}1{
)2/sin(

}{
2

1
)(

1 





 kjjk
kt

T
jkt

T
jkt

T
j

T
k ee

k

k
dtedteetx

T
a 




   

Comparing the answer to parts (a) and (b) ,it is clear that  

)
2

(
1

T

k
jX

T
ak




 

Where T=2. 

4.28 

(a) Form Table 4.2 we know that  

)(2)()( 0
0 

kajpeatp
n

k

FT

n

tjn

n  








 

From this , 







n

k kjXajHjXjY ))(()}(*)({
2

1
)( 0


  

(b)The spectra are sketched in Figure S4.28 

4.29 (i)  We have 

          jajajXj

a ejXejXjX   )()()( )(  

From the shifting property we know that  

)()( atxtxa   

(ii)  We have 

          jbjbjXj

b ejXejXjX   )()()( )(  

From the shifting property we know that  

)()( btxtxb   

(iii)  We have 

        )()()( *)(   jXejXjX jXj

c    

From the conjugation property we know that  

)()( * txtxc   

Since x(t) is real , )()( txtxc   
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  3 
0 

1/2 

-1 -2 1 2 

(vi) 
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                                 Figure s4.28 

(iv)  We have 

        
  jdjdjXj

d ejXejXjX )()()( *)(  
 

From the conjugation , time reversal and time shifting properties we know that  

)()( * dtxtxd   

Since x(t) is real , )()( dtxtxd   

4.30 (a) We have that  

)]1()1([)(cos)(  jWttw FT  

And  

)](*)([
2

1
)(cos)()( 


 jWjXjGttxtg FT   

Therefore, 

)1((
2

1
)1((

2

1
)(   jXjXjG  

Since )( jG is as shown in Figure s4.30 , it is clear from the above equation that  )( jX is as 

shown in the Figure s4.30. 

 

 

 

 

 

 

Figure s4.30 

(b)  )(1 jX  is as shown in the Figure s4.30 

4.31 (a) We have 

       )]1()1([)(cos)(  jXttx FT  

(i) We have 

       )(
1

)()()( 11 


 
j

jHtuth FT  

Therefore, 

)]1()1([)()()( 1  



j

jHjXjY  

Taking the inverse Fourier transform ,we obtain 

)sin()( tty   

(ii)We have 

       



j

jHtuetth FTt


 

2

5
2)()(5)(2)( 2

2

2
 

Therefore, 

2 

  0 
-2 2 

)( ja  

1 

2 

-1   
0 

)( jX  
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)]1()1([)()()( 1  



j

jHjXjY  

Taking the inverse Fourier transform ,we obtain 

)sin()( tty   

(iii)we have 

             h3(t)=2t
te
u(t)↔H2(j )=

2)1(

2

j
. 

Therefore, 

         Y(j )=X(j )H1(j )= )]1()1([  


jj
j

. 

 Taking the inverse Fourier transform ,we obtain 

y(t)=sin(t). 

 (b)An LTI system with impulse response 

             h4(t)=
2

1
[h1(t)+h2(t)] 

will have the same response to x(t) =cos(t),we can find other such impulse responses by suitably scaling and 

linearly combining h1(t),h2(t),and h3(t). 

4.32 Note that h(t)=h(t-1); where 

                    h1(t)=
t

t



4sin  

The Fourier transform H1(jw) of h1(t) is as shown in figure s4.32. 

From the above figure it is clear that h1(t) is the impulse response of an ideal lowpass filter whose passband 

is in the rage |w|<4.therefore, h(t) is the impulse response of an ideal lowpass filter shifted by one to the 

right .using  the shift property, 

                 H(j )=



 

otherwise

e t

,0

4||,   

(a) we have  

               X1(j )= )6(12 


j

e + )6(12 


j

e  

It is clear that 

             Y1(j )= X1(j ) H(j )=0y1(t)=0 

this result is equivalent to saying that x1(jw) is zero in the passband of H(jw). 

(b) We have 

                 X2(j )= ].)}3()3({)
2

1
([

0







k

k kk
j


  

Therefore, 

Y2(j )= X2(j ) H(j )= ].)}3()3(){
2

1
([

0







k

je
j


  

this implies that 

                  y2(t)=
1
/2 sin(3t-1). 

we may have obtained the same result by noting that only the sinusoid with frequency 3 in x2(jw) lies in the 

passband of H(jw). 

(c) We have 

                     X2(j )=



 

otherwise

e j

,0

4||, 
 

Y3(j )= X3(j ) H(j )=X3(j )
je

 

this implies that 

                     y3(t)= x3(t-1)= 
t

t



)4sin( . 

we may have obtained the same result by noting that x2(jw) lies entirely in the  

(d) x4(jw) is as shown figure s4.32. 
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Figure S4.32 
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Therefore, 

 Y4(j )= X4(j ) H(j )=X4(j )
je

 

This implies that  

                       Y4(t)= x4(t-1)= 2)
)1(

))1(2sin(
(





t

t



. 

We may have obtained the same result by noting that x4(jw) lies entirely in the passband of H(jw) . 

4.33 (a)Taking the Fourier transform of both sides of the given differential equation .we obtain 

H(j )=
)(

)(





jX

jY =
82

2
2   j

. 

Using partial fraction expansion, we obtain 

                    H(j )=


 2

2

j 4

1

j

 

Taking the inverse Fourier transform 

                   2 4( ) ( ) ( )t th t e u t e u t    

(b) for the given signal x(t) ,we have  
                    

2

1
( )

(2 )
X j

j







 

Therefore, 

2 2

2 1
( ) ( ) ( )

( 2 8) (2 )
Y j X j H j

j j
  

  
 

   

 

Using partial fraction expansion, we obtain 
                    

2 3

1/ 4 1/ 2 1 1/ 4
( )

2 ( 2) ( 2) 4
Y j

j j j j


   
   

   

 

Taking the inverse Fourier transform 

                    2 2 2 2 41 1 1
( ) ( ) ( ) ( ) ( )

4 2 4

t t t th t e u t e u t t e u t e u t        

(c) Taking the Fourier transform of both sides of the given differential equation ,we obtain 
2

2

( ) 2( 1)
( ) .

( ) 2 1

Y j
H j

X j j

 


  

 
 

  

 

Using partial fraction expansion ,we obtain 
2 2 2 2 2 2

( ) 2
2 2 2 2

2 2

j j
H j

j j
j j



 

   
  

   
 

 

Taking the inverse Fourier transform 

                  (1 ) / 2 ( 1 ) / 2h(t)=2 (t)- 2(1 2 ) ( ) 2(1 2 ) ( ).j t j tj e u t j e u t        

4.34.(a)We have 

2

( ) 4
.

( ) 6 5

Y j j

X j j

 

  




 

 

Cross-multiplying and taking the inverse Fourier transform, we obtain 
2

2

( ) ( ) ( )
5 6 ( ) 4 ( ).

d y t dy t dx t
y t x t

dt dt dt
   

 

(b)we have 
                2 1

( ) .
2 3

H j
j j


 

 
 

 

Taking the inverse Fourier transform we obtain, 
2 3( ) 2 ( ) ( ).t th t e u t e u t    

(c ) we have 
               

2

1 1
( )

4 (4 )
X j

j j


 
 

 

    

Therefore, 
                1

( ) ( ) ( )
(4 )(2 )

Y j X j H j
j j

  
 

 
 

 

Finding the partial fraction expansion of Y(j ) and taking the inverse Fourier transform. 

                2 41 1
( ) ( ) ( ).

2 2

t th t e u t e u t    

4.35 (a)from the given information  
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* 

               
2 2

2 2
|H(j )|= 1.

a

a











 

Also. 
1 1 1( ) tan tan 2 tanH j
  


  

      
 

Also. 
          2

( ) 1H j
j




 
  



 ( ) ( ) 2 ( )ah t t ae u t      

(b)if a=1,we have 

          | ( ) | 1.H j       1( ) 2 tanH j    

Therefore, 

          2
( ) cos( ) cos( ) cos( 3 ).

3 2 33

t
y t t t

  
       

4.36. (a)the frequency response is  
          ( ) 3(3 )

( ) .
( ) (4 )(2 )

Y j j
H j

X j j j

 


  


 

 

 

(b)finding the partial fraction expansion of answer in par (a) and taking its inverse 

Fourier Transform, we obtain 
4 23

( ) [ ] ( ).
2

t th t e e u t  
 

(c) we have 
            

2

( ) (9 3 )
.

( ) 8 6

Y j j

X j j

 

  




 

 

Cross-multiplying and taking the inverse Fourier transform. we obtain 
2

2

( ) ( ) ( )
6 8 ( ) 3 9 ( ).

d y t dy t dx t
y t x t

dt dt dt
     

4.37.(a)Note that  

x(t)=x 1 (t)  x 1 (t) 

where 

1

1
1,

( ) 2

0,

x t

otherwise





 

  

Also, the Fourier transform  1X j  of x 1 (t) is 

 1

sin( 2)
2X j







 
Using the convolution property we have  

     
2

1 1

sin( 2)
2X j X j X j


  



 
   

   

(b) The signal ( )x t  is shown in Figure S4.37 

 

 

 

 

 

 

Figure S4.37 

(c)Note that 

( ) ( ) ( ( )) ( ) ( ( ))
2 2 2 2k k

X j X j j k G j j k
   

      
 

 

    
 

This may also be written as  

( ) ( / 2) ( ( )) ( / 2) ( ( ))
2 2 2 2k k

X j X j k j k G j k j k
   

      
 

 

    
 

Clearly, this is possible only if  
( / 2) ( / 2)G j k X j k   

4.38.(a)Apply a frequency shift to the analysis equation ,we have  

(b) We have 
0

0( ) ( ) 2 ( )
j t FSt e W j
         

Also 

 

-5 
. 
-5 
. 

( )x t  
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. 

2 
. . 

3 
. . 
4 5 -4 

. . 
-3 

. . 
-2 -1 0 

. . . 

 

. 

t 1 
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2 
. . 

3 
. . 
4 5 -4 

. . 
-3 

. . 
-2 -1 0 

. . . 

 

. 

1 1 1 

 

 

-5 
. 

( )g t  

1 
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. . 

3 
. . 
4 5 -4 

. . 
-3 

. . 
-2 -1 0 t 1 

. 
2 
. . 

3 
. . 
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. 

 



 77 

 
1

( ) ( ) ( ) ( )
2

FTx t t X j W j  


 
 

0( ) ( )X j       
0( ( ))X j     

4.39. (a) From the Fourier analyses equation. We have  

( ) ( ) ( )j t j tG j g t e dt X jt e dt 
 

 

 
             (S4.39-1) 

Also from the Fourier transform equation, we have  
1

( ) ( )
2

j tx t X j e d 





 

 
Switching the variables t and  , we have 

1
( ) ( )

2

j tx X jt e dt





 

 
We may also write this equation as  

2 ( ) ( ) j tx X jt e dt 





    

Substituting this equation in eq. (S4.39-1), we obtain  
( ) 2 ( )G j x     

(b) If in part (a) we have ( ) ( )x t t B  , then we would have ( ) ( ) jBtg t X jt e   and  
( ) 2 ( ) 2 ( ) 2 ( )G j x B B              

4.40. When n=1, 1( ) ( )atx t e u t
 and 1( ) 1/( )X j a j    

When n=2, 2( ) ( )atx t e u t  and 
2

2( ) 1/( )X j a j    

Now, let us assume that the given statement is true when n=m, that is, 
1 1

( ) ( ) ( )
( 1)! (1 )

m
FSat

m m m

t
x t e u t X jw

m j


  

   
For n=m+1 we may use the differentiation in frequency property to write, 

1 1 1

( )1 1
( ) ( ) ( )

(1 )

FS m
m m m m

dX jt
x t x t X j j

m m d j




 
  

   
  

This shows that if we assume that the given statement is true for n=m, then it is true for n=m+1 .Since we also 

shown that the given statement is true for n=2, we may argue that it is true for n=2+1=3, n=3+1=4, and so on. 

Therefore, the given statement is true for any n. 

4.41. (a) We have  

 
1 1

( ) ( ) ( )
2 2

j tg t X j Y j e d  
 




 

 
1 1

( ) ( ( ))
2 2

j tX j Y j d e d    
 

 

 

  
   

 
1 1

( ) ( ( ))
2 2

j tX j Y j e d d    
 

 

 

 
  

 
 

 
(b) Using the frequency shift property if the Fourier transform we have 

1
( ( )) ( )

2

j t j tY j e d e y t   





 

 
(c) Combining the results of parts (a) and (b) 

1
( ) ( ) ( )

2

j tg t X j e y t d 





 

 
1

( ) ( )
2

j ty t X j e d 





 

 
( ) ( )y t x t  

4.42. x(t) is periodic signal with Fourier series coefficients ka
. The fundamental frequency of x(t) is 

f
=100 rad/sec. From Section 4.2 we know that the Fourier transform ( )X j of x(t) is  

( ) 2 ( 100 )k

k

X j a k   




 
 

(a) Since 

 1 0 1 0 0

1
( ) ( )cos( ) ( ) ( ( )) ( ( ))

2

FTy t x t t Y j X j X j          
 

   We have  

 1 0 0( ) ( 100 ) ( 100 )k k

k

Y j a k a k       




     
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 0 0( 100 ) ( 100 )k k

k

a k a k      






     
   (S4.42-1) 

If 0
=500. then the term in the above summation with k=5 becomes 

5 5( ) ( )a a      
 

Since x(t) is real, k ka a

 .Therefore, the above expression becomes 52 { } ( )e a  
, 

Which is an impulse at 0  . Note that the inverse Fourier transform of 52 { } ( )e a  
 

is  1 5( )g t m a  .Therefore ,we now need to find a ( )H j  such that  

 1 1 5( ) ( ) ( ) 2 ( )Y j H j G j e a         

We may easily obtain such a ( )H j  by noting that the other terms (other than that for k=5) in the summation 

of eq.(S4.42-1) result in impulses at  =100m, 0m  .Therefore, we may choose any ( )H j which is zero 

for 100m  , where 1, 2,m      

Similarly since 

 2 0 2 0 0

1
( ) ( )sin( ) ( ) ( ( )) ( ( ))

2

FTy t x t t Y j X j X j
j

          
 

we have 

2 0 0( ) [ ( 100 ) ( 100 )]k k

k

Y j a k a k
j


      





     
 

0 0[ ( 100 ) ( 100 )]k k

k

a k a k
j


     







     
(S4.42-2) 

If 0
=500, then the term in the above summation with k=5 becomes 

5 5( ) ( )a a
j j

 
    

 

Since x(t) is real, 2 ,Therefore, the above expression becomes 52 { } ( )e a   , 

Which is an impulse at 0  . Note that the inverse Fourier transform of 52 { } ( )e a    

Is 
 2( ) kg t m a 

.Therefore ,we now need to find a ( )H j  such that  

 2 2 5( ) ( ) ( ) 2 ( )Y j H j G j e a       
 

 (b) An example of a valid ( )H j  which be the frequency response of an ideal lowpass filter 

with passband gain of unity and cutoff frequency of 50 rad/sec. In this case, 
sin(50 )

( )
t

h t
t


 

4.43. Since  

2

1

1 cos(2 )
( ) cos

2

t
y t t


 

 
we obtain  

1( ) ( ) ( 2) ( 2)
2 2

Y j
 

          
 

Therefore, 

 2

2 1 2 1

1
( ) ( ) ( ) ( )cos ( ) ( ) ( ) ( )

2

FTy t x t y t x t t Y j X j Y j  


    
 

This gives  

2

1 1 1
( ) ( ) ( ( 2)) ( ( 2))

2 4 4
Y j X j X j X j       

 
( )X j  and 2 ( )Y j  are as shown in Figure S4.43. 

 

 

 

 

 

 

 

 

 

 

 

  

( )X j  

-1 1 0 

 

 

 

 
  

   

  

- 1   1   0   

A/2 

( )G j  
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  -1 1 0 -3 2 -2 3 

A/2 

A/4 A/4 

2 ( )X j  

 
 

 

 

Figure S4.43 

Now, 

3 3

1, 1sin
( ) ( )

0,

FTt
y t Y j

t otherwise






 
   

  
Also, 

2 3 2 3( ) ( ) ( ) ( ) ( ) ( )FTg t y t y t G j Y j Y j       
From Figure S.4.43 it is clear that 

1
( ) ( )

2
G j X j 

 

Therefore, an LTI system with impulse response 

1
( ) ( )

2
h t t

 may be used to obtain ( )g t  from ( )x t  

4.44. (a) Taking the Fourier transform of both sides of the given differential equation, we have  

   ( ) 10 ( ) ( ) 1Y j j X j Z j     
 

Since, 

1
( ) 3

1
Z j

j



 

  , we obtain from the above equation 
( ) 3 2

( )
( ) (1 )(10 )

Y j j
H j

X j j j

 


  


 

   

(b) Finding the partial fraction expansion of ( )H j  and then taking its inverse Fourier 

Transform we obtain  
101 17

( ) ( ) ( )
9 9

t th t e u t e u t  
 

4.45. We have  
( ) ( ) ( ) ( ) ( )y t x t h t Y j H j     

From Parseval’s relation the total energy in y(t) is  
2 21

( ) ( )
2

E y t dt Y j d 


 

 
  

 
2

21
( ) ( )

2
X j H j d  






 

 
0 0

0 0

2 2/ 2 / 2

/ 2 / 2

1 1
( ) ( )

2 2
X j d X j d

 

 
   

 

   

  
  

 
2

0

1
( )E X j




 

For real x(t) , 
2

0( )X j =
2

0( )X j . Therefore, 
2

0

1
( )E X j




 

4.46. Let 1( )g t  be the response of 1( )H j
 to ( )cos cx t t .Let 2 ( )g t

 be the response of  

2 ( )H j  to ( )sin cx t t .Then, with reference to Figure 4.30, 

( ) ( ) ( )cos ( )sincj t

c cy t x t e x t t x t t
    

 
and  

1 2( ) ( ) ( )t g t jg t    
Also, 

1 2( ) ( ) [cos sin ][ ( ) ( )]cj t

c cf t e t t j t g t jg t
   

     
Therefore, 

  1 2( ) ( )cos ( )sinc ce f t g t t g t t   
 

This is exactly what Figure P4.46 implements. 

4.47. (a)We have 
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2

)()(
)(

thth
the


 . 

       Since h(t) is causal, the non-zero portions of h(t) and h(-t) overlap only at t=0.Therefore, 

              

















0),(2

0),(

0,0

)(

tth

tth

t

th

e

e

    (s4.47-1)  

       Also, from Table 4.1 we have 

              )}.(Re{)( jwHth FT
e   

       Given Re{H(jw)},we can obtain )(the .From )(the ,we can recover )(th (and consequently 

)( jwH ) by using eq.(s4.47-1). 

       Therefore, )( jwH  is completely specified by Re{ )( jwH }. 

    (b)If 

              jwtjwt eetjwH 
2

1

2

1
cos)}(Re{  

       then, 

              ).1(
2

1
)1(

2

1
)(  ttthe    

       Therefore from eq.(s.4.47-1), 

              ).1()(  tth   

    (c)We have  

              .
2

)()(
)(

thth
tho


  

       Since h(t) is causal, the non-zero portions of h(t) and h(-t) overlap only at t=0 and )(tho will be zero 

at t=0,Therefore, 

              

















0),(2

0,

0,0

)(

tth

tunknow

t

th

o

.   (s4.47-2) 

       Also, from Table4.1 we have 
              )}.(Im{)( jwHth FT

o   

       Given )}(Im{ jwH ,we can obtain )(tho .From )(tho ,we can recover )(th except for t=0 by using 

eq.(s4.47-1).If there 

       Are no singularities in )(th at t=0,then )( jwH  can be recovered from )(th  even if )0(h is 

unknown. Therefore )( jwH  

       Is completely specified by IM{ )( jwH } in this case. 

4.48. (a)Using the multiplication property we have 

              
.)](

1
[*)(

2

1
)()()()(









 w
jw

jwHjwHtuthth FT 


 

       The right-hand side may be written as 
              

].
1

*)([
2

1
)(

2

1
)(

w
jwH

j
jwHjwH




 

       That is, 

              .
)(1

)( 





d

w

jH

j
jwH 



 
  

       Breaking up )( jwH  into real and imaginary parts, 

             
.

)()(1)()(1
)()( 













d

w

jjHjH
d

w

jjHjH

j
jwjHjwH

RIIR

IR 






 









 

       Comparing real and imaginary parts on both sides, we obtain 

             





d

w

jH
jwH

I
R 



 


)(1
)(   and  







d

w

jH
jwH

R
I 



 


)(1
)(

. 

(b)From eq.(P4.48-3),we may write 

         
}.)(1{)()(

1
*)()( tFTjwXjwY

t
txty 




     (S.4.48-1) 

   Also, from Table 4.2 



 81 

         
).(

1
)( w

jw
tu FT 

 

   Therefore, 

         .
1

21)(2
jw

tu FT  

   Using the duality property, we have 

         ].1)(2[2
2

 wu
jt

FT   

   or 
         

].1)(2[
1

 wuj
t

FT



 

   Therefore, from eq.(S4.48-1),we have 

         )()()( jwHjwXjwY  . 

   where 

         










0,

0,
]1)(2[)(

wj

wj
wujjwH

. 

(c)Let y(t) be the Hilbert transform of x(t)=cos(3t).Then, 
         ).3()3()()]3()3([)()()(  wjwjjwHwwjwHjwXjwY   

   Therefore, 

         y(t)=sin(3t). 

4.49.(a) (i)Since H(jw) is real and even, h(t) is also real and even. 

       (ii)








 dwejwHdwejwHth jwtjwt |)(|

2

1
)(

2

1
|)(|



 

Since H(jw) is real and positive, 
         ).0()(

2

1
|)(| hdwejwHth jwt  





 

Therefore, 

        max[|h(t)|]=h[0]. 

(b)The bandwidth of this system is 2w. 

(c)We have 

         )0( jHBw Area under H(jw). 

   Therefore, 

         




 .)(

)0(

1
dwjwH

jH
Bw

 

(d)We have 
         

.
2

)(
2

1

)0(

)(
2

1

)(

)0(

)(

w

r

B
dwjwH

jH

dwjwH

dtth

h

s
t

























 

(e)Therefore, 

         
.2

2





w

wrw

B
BtB

 

4.50.(a)We know from problems 1.45 and 2.67 that 

             ).()( tt yzxy   

       Therefore, 

             ).()( jwjw yxxy   

       Since )(tyx is real, 

             )( jwxy = )(* jwyx . 

(b)We may write 

         ).(*)()()()( tytxdytxtxy  



  

   Therefore, 
         ).(X(jw)Y)( jwjwxy   

   Since y(t) is real, we may write this as 

         ).(X(jw)Y)( * jwjwxy   

(c)Using the results of part(b) with y(t)=x(t), 
         .0|)(|)(X(jw)X)( 2*  jwXjwjwxx  

(d)From part(b) we have 
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         )(X(jw)Y)( * jwjwxy   

                 *)X(jw)]X(jw)[H(jw  

                 ).()( * jwHjwxx  

   Also, 

          )(Y(jw)Y)( * jwjwyy   

                  *]H(jw)X(jw)[)][H(jw)X(jw  

                  .|)(|)( 2jwHjwxx  

(e)From the given information, we have 

          
w

e
j

w

e
jwX

jwjw 


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
2

1
)(  

   and 

          
.

1
)(

jwa
jwH




 

   Therefore, 
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1sin2cos22
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224

2
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w

w
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
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
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
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w
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   and 

          .
11sin2cos22

|)(|)()(
22224
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



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
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
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



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w
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    (f) We require that 

.
25

100
|)(|

2

2
2






w

w
jwH  

The possible causal and stable choices for H(jw) are 

          
jw

jw
jwH






5

1
)(1

 and 
.

5

10
)(2

jw

jw
jwH






 

The corresponding impulse responses are 

          )(5)()( 5

1 tuetth t   and ).(15)()( 5

2 tuetth t   

Only the system whit impulse response )(1 th has a causal and stable inverse. 

4.51.(a)H(jw)=1/G(jw). 

(b)(i)If we denote the output by y(t),then we have 
          

.
2

1
)0( jY

 

    Since H(j0)=0,it impossible for us to have Y(j0)=X(j0)H(j0).Therefore, we cannot find an x(t) which 

produces an output which looks like Figure P4.50. 

  (ii)This system is not invertible because 1/H(jw) is not defined for all w. 

(c)We have 
          

.
1

1
)(

)1(
0

Tjw
k

jwkTkT

e
eejwH












 

   We now need to find a G(jw) such that 

          H(jw)G(jw)=1. 

   Thus G(jw) is the inverse system of H(jw), and is given by 
          .1)( )1( TjwejwG   

(d)Since H(jw)=2+jw, 
          

.
2

1

)(

)(
)(

jwjwX

jwY
jwG




 

  Cross-multiplying and taking the inverse Fourier transform, we obtain 
          ).()(2

)(
txty

dt

tdy
  

(e)We have 

          
.

96

23
)(

2

2






jww

jww
jwH

 

  Therefore, the frequency response of the inverse is 

         .
23
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)(

1
)(

2

2






jww

jww

jwH
jwG  

   The differential equation describing the inverse system is 
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).(9

)(
6

)(
)(2

)(
3

)( 22

tx
dt

tdx

dt

txd
ty

dt

tdy

dt

tyd


 

   Using partial fraction expansion followed by application of the inverse Fourier transform. We find the 

impulse responses to be 

         )(2)(3)()( 33 tutetuetth tt     

  and  
         ).(4)()()( 2 tuetuettg tt     

4.52.(a)Since the step response is )()1()( 2/ tuets t ,the impulse response has to be 

).(
2

1
)( 2/ tueth t  

The frequency response of the system is 
       

.
2/1

)(

2

1
jw

jwH



 

We now desire to build an inverse for the above system. Therefore, the frequency response of the 

inverse system has to be 

       
.

2

1
2

)(

1
)( 








 jw

jwH
jwG

 

Taking the inverse Fourier transform we obtain 

       ).(2)()( 1 tuttg    

(b)When sin(wt) passes through the inverse system, the output will be 

         ).cos(2)sin()( wtwwttt   

   We see that the output is directly proportional to w. Therefore, as w increases, the contribution to the 

output due to the noise also increases. 

(c)In this case we require that 
4

1
|)(| jwH  when w=6.Since 

         ,
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wa
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
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  we require that 
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  Therefore, .
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Chapter 5 Answers 
5.1 (a) let x[n]= 1(1/ 2)n u[n-1].Using the Fourier transform analysis equation (5.9).the Fourier transform 

( )jwX e  of this signal is  

( ) [ ]jw jwn

n

X e x n e






   

                      =
1n






1(1/ 2)n jwne   

                       = ( 1)

0

(1/ 2)n jw n

n

e


 



  

                        =
jwe

1

(1 (1/ 2) )jwe

 

(b) Let x[n]= | 1|(1/ 2) n .Using the Fourier transform analysis equation (5.9).The Fourier transform ( )jwx e of 

signal is 

( ) [ ]jw jwn

n

x e x n e






  =

0
( 1) 1

1

(1/ 2) (1/ 2)n jwn n jwn

n n

e e


    

 

   

The second summation in the right—hand side of the above equation is exactly the same as result of part 

(a).Now , 

0
( 1)(1/ 2) n jwn

n

e  



 =

1

0

(1/ 2)n jwn

n

e






 =(1/2)

1

(1 (1/ 2) )jwe  

Therefore 

( )jwx e
=(1/2)

1

(1 (1/ 2) )jwe
+ 

jwe 1

(1 (1/ 2) )jwe
=

0.75

(1.25 cos )

jwe

w



  

5.2 (a) let
[ ] [ 1] [ 1]x n n n    

 . Using the Fourier 

transform analysis equation (5.9).the Fourier transform ( )jwx e of this signal is 

( ) [ ]jw jwn

n

x e x n e






   

=
jwe

+

jwe = 2cos w  

 (b) Let [ ] [ 2] [ 2]x n n n      .using the Fourier transform analysis equation (5.9). the Fourier transform ( )jwx e  

of this signal is 

( ) [ ]jw jwn

n

x e x n e






   

=
2 jwe -

2 jwe
= 2 sin(2 )j w  

5.3 We note from section 5.2 that a periodic signal with Fourier series representation  

x[n]= (2 / )jk N n

k

k N

a e 

 

  

has a Fourier transform  

( )jwX e = 2
2 ( )k

k

k
a w

N


 





  

( a ) Consider the signal
1[ ] sin( )

3 4
x n n

 
   .We note that the fundamental period of the signal 1[ ]x n  is N=6. 

The signal may be written as  
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1[ ]x n = ( )
3 4

1

2

j n

e
j

 
     ( )

3 4
1

2

j n

e
j

 
  = 

2

64
1

2

j nj

e e
j



 
2

64
1

2

j nj

e e
j




  

Form this , we obtain the non-zero  Fourier series coefficients ka of 1[ ]x n  the range  

2 3    as 

4
1 (1/ 2 )

j

a j e


          4
1 (1/ 2 )

j

a j e




     

Therefore , in the range w     ,we obtain  

1 1

2 2
( ) 2 ( ) 2 ( )

6 6

jwX e a w a w
 

        

      / 4 / 4( / ){ ( 2 / 6) ( 2 / 6)}j jj e w e w           

(b) consider the signal 
2[ ] 2 cos( )

6 8
x n n

 
   .we note that the fundamental period of the signal 1[ ]x n  is 

N=12.the signal maybe written as  

( ) ( )
6 8 6 8

1

2 2

8 812 12

[ ] 2 (1/ 2) (1/ 2)

2 (1/ 2) (1/ 2)

j n j n

j jj n j n

x n e e

e e e e

   

  

  



  

  

 

 Form this ,we obtain the non-zero Fourier series coefficients ka  of 2[ ]x n  in the range 5 6k    as 

0 2a      8
1 (1/ 2)

j

a e


       8
1 (1/ 2)

j

a e




   

Therefore ,in the  range ,we obtain  

0 1 1

/8 /8

2 2
( ) 2 ( ) 2 ( ) 2 ( )

12 12

4 ( ) { ( ) ( )}
6 6

jw

j j

X e a w a w a w

w e w e w 

 
     

 
   





    

    

 

5.4 (a)Using the Fourier transform synthesis equation (5.8) 

1 1[ ] (1/ 2 ) ( )jw jwnx n X e e dw






   

(1/ 2 ) [2 ( ) ( / 2) ( / 2)] jwnw w w e dw



     


       

0 ( / 2) ( / 2)(1/ 2) (1/ 2)j j n j ne e e     

1 cos( / 2)n   

    (b)Using the transform synthesis equation (5.8) 

2 2[ ] (1/ 2 ) ( )jw jwnx n X e e dw






   

0

0
(1/ 2 ) 2 (1/ 2 ) 2jwn jwnje dw je dw




 


     

1 1
( / )[ ]

j n j ne e
j

jn jn

 


 

    

2(4 /( ))sin ( / 2)n n    

5.5 From the given information  

[ ] (1/ 2 ) ( )jw jwnx n x e e dw






   

= { ( )}(1/ 2 ) | ( ) |)
jwjw j X e jwnX e e e dw






  

3
/ 4

2

/ 4
(1/ 2 )

w
jwne e dw









   

sin( ( 3/ 2))
4

( 3/ 2)

n

n










 

The signal x[n]is zero when 
( 3/ 2)

4
n




 is a nonzero integer multiple of   or when |n|  .the value of 

( 3/ 2)
4

n



 can never be such that it is a nonzero integer multiple of   .Therefore .x[n]=0  only for n=  

5.6 Throughout this problem, we assume that 

X[n] 
FT

1( )jwx e  

(a) Using the time reversal property (Sec.5.3.6),we have 
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x[-n] FT ( )jwX e
 

Using the time shift property (Sec.5.3.3) on this .we have 
FTx[-n+1]    ( )jwn jwe x e   and   FTx[-n-1]    ( )jwn jwe x e  

Therefore  

1[ ]x n  x[-n+1] + x[-n-1] FT  ( )+  ( )jwn jw jwn jwe X e e X e    

                       
FT 2X ( )cosjwe w  

(b) Using the time reversal property (Sec.5.3.6) ,we have 
FTx[-n]  X( )jwe  

Using the same conjugation property on this ,we have  
FT*x [-n]  *X ( )jwe  

Therefore  
FT*

2x [n]=(1/2)(x [-n]+x[n]) (1/2) *( ) ( )jw jwX e X e  

                      
FT Re{ ( )}jwX e  

(c) Using the differentiation frequency property (Sec.5.3.8),we have 

( )
[ ]

jw
FT dX e

nx n j
dw

  

Using the same property second time , 
2

2

2

( )
[ ]

jw
FT d X e

n x n
dw

  

Therefore 
2 2

2

3 2 2

( ) ( )
[ ] [ ] 2 [ ] 1 2 ( )

jw jw
FT jwd X e d X e

x n n x n nx n j X e
dw dw

       

5.7 (a) Consider the signal 1[ ]y n   with Fourier transform  
10

1

1

( ) sin( )jw

k

Y e kw


  

We see that 1( )jwY e  is real and odd .From Table 5.1 , we know that the Fourier transform of a real and odd 

signal is purely imaginary and odd. Therefore ,we may say that the Fourier transform of a purely imaginary 

and odd signal is real and odd. Using this observation, we conclude that 1[ ]y n  is purely imaginary and odd 

Note now that 

1 1( ) ( )jw jw jwX e e Y e  

Therefore , 1 1[ ] [ 1]x n y n  .therefore , is also purely imaginary .but 1[ ]x n  is neither even nor odd 

(b)We note that 
2 ( )jwX e is purely imaginary and odd. Therefore, 

2[ ]x n  has to be real and odd. 

(d) ©Consider a signal 
3[ ]y n whose magnitude of the Fourier transform is 

3| ( ) | ( )jwY e A w  and whose phase 

of the Fourier transform is
3{ ( )} (3/ 2)jwY e w   .since

3 3| ( ) | | ( ) |jw jwY e Y e  and ,we may conclude that the 

signal 3[ ]y n is real (see Table 5.1,property5.3.4). 

Now, consider the signal 3[ ]x n  with Fourier transform 
3 3 3( ) ( ) ( )jw jw jX e Y e e Y jw  .Using the result from 

previous paragraph  and the linearity property of the Fourier transform .we  may conclude that has to 

real .since the Fourier transform ,we may conclude that has to real . since the Fourier transform 3( )jwX e is 

neither purely imaginary nor purely real .the signal 3[ ]x n  is neither even nor odd 

5.8 Consider the signal 
1,

1 0,[ ] {x n        
| | 1

| | 1

n

n



  

From the table 5.2, we know that 

1 1

sin(3 / 2)
[ ] ( )

sin( / 2)

FT jw w
x n X e

w
   

Using the accumulation property (Table 5.1，Property 5.3.5),we have 

0

1 1 1

1
[ ] ( ) ( ) ( 2 )

1

n
FT jw j

jw
k k

x k X e X e w k
e

  



 

  


   

Therefore , in the range w     , 
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1 1

1
[ ] ( ) 3 ( )

1

n
FT jw

jw
k

x k X e w
e






 


  

Also, in the range w    , 

1 2 ( )FT w  

Therefore , in the range w     , 

1 1

1
[ ] 1 [ ] ( ) 5 ( )

1

n
FT jw

jw
k

x n x k X e w
e






   


  

The signal x[n] has the desired Fourier transform .We may express x[n] mathematically as  

1[ ] 1 [ ]
n

k

x n x k


   = 
1

3

4

n 
      

2

1 1

2

n

n

n

 

  



 

5.9 From property 5.3.4 in Table 5.1 , we know that for a real signal x[n], 

1{ [ ]} Im{ ( )}FT jwOd x n j X e  

From the given information  

1Im ( )jwj X e sin sin 2j w j w   

           2 2(1/ 2)( )jw jw jw jwe e e e      

Therefore, 

1{ [ ]} { Im ( )} (1/ 2)( [ 1] [ 1] [ 2] [ 2])jwOd x n IFT j X e n n n n             

We also know that 
{ [ ]}Od x n  [ ] [ ]

2

x n x n   

And that x[n]=0 for n>0. therefore  

[ ]x n 2 { [ ]}Od x n [ 1] [ 2]n n           for n<0 

Now we only have to find x[0] .Using Parseval’s relation ,we have  
2

21
| ( ) | | [ ] |

2

jw

n

X e dw x n







   

Form the given information, we can write  
1

2 2 23 ( [ ]) | [ ] | ( [ ]) 2
n

x n x n x n




     

 This gives x[0]=1.but since we are given that x[0]>0.we conclude that x[0]=1 

Therefore  
[ ] [ ] [ 1] [ 2]x n n n n        

5.10 From table 5.2 we know that  
1 1

( ) [ ]
12

1
2

FTn

jw

u n

e





 

Using property 5.3.8 in table 5.1, 

2

1
1 1 2[ ] ( ) [ ] ( ) { }

1 12
1 (1 )

2 2

jw

FTn jw

jw jw

e
d

x n n u n X e j
dw

e e



 

   

 

 

Therefore , 0

0

1
[ ] ( ) [ ] ( ) 2

2

n j

n

x n n x n X e
 

 

      

5.11 We know from the time expansion property (Table 5.1, Property 5.3.7) that 
  )()(][][ 2

)2(

 jjFT eXeGnxng   

   Therefore, )( jeG  is obtained by compressing )( jeX  by a factor of 2. Since we know that )( jeX  is 

periodic with a periodic of 2 , we my conclude that )( jeG  has a periodic which is (1/2) 2 = . Therefore, 

   aandeGeG jj )()( )9 . 

5.12 Consider the signal 




















n

n

nx




4
sin

][1

 

  For Table 5.2, we obtain the Fourier transform of x1[n] to be 
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













||4/,0

4/||0,1
)(1

jeX  

 The plot of )(1

jeX  is as shown in Figure S5.12. Now consider the signal x1[n]=( x2[n])
2
. Using the 

multiplication property  (Table 5.1, Property 5.5), we obtain the Fourier transform of x2[n] to be 

)]()()[2/1()( 112

  jjj eXeXeX   

  This is plotted in Figure S5.12. 

  From Figure S5.12. It is clear that )(2

jeX  is zero for 2/  . By using the convolution property 

(Table 5.1, Property 5.4), we know that 










n

n
FTeXeY cjj



 sin()
)()( 1

 

 

 

 

 

 

 

 

The plot of 









n

n
FT c



sin  is shown in Figure S5.12. It is clear that of  then  2/ . 

5.13 When two LTI systems connected in parallel, the impulse response of the overall system is the sum of 

the impulse response of the individual. Therefore, 

               h[n]= h1[n]+ h2[n] 

using the linearity property (Table 5.1, Property 5.3.2) 

 

  Given that h1[n]=(1/2)
n
u[n], we obtain 

 

 

Therefore,  

 

 

Taking the inverse Fourier transform,    h2[n]=-2(1/4)
n
u[n]. 

5.14  From the given information, we have the Fourier transform )( jeG of g[n] to be  

 

 

 Also, when the input to the system is x[n]=(1/4)
n
u[n], the output is g[n]. Therefore, 

 

 

For Table 5.2, we obtain 

 

 

Therefore, 

 

Clearly, h[n] is a three point sequence. 

We have  

 

and 

 

 

We see that )()( )(   jj eHeH  only if h[1]=0. 

  We also have 

 

 

Since we are also given that 1)( 2/ jeH , we have h[0]-h[2]=1  (S5.14-1) 

Now not that 
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Evaluating this equation at n=2, we have 

 

Since h[1]=0, 

                                        (S5.14-2) 

Solving equation (S5.14-1) and  (S5.14-2), we obtain 

 

Therefore, 

 

5.15 Consider x[n]=sin(wcn)/(πn), the Fourier transform )( jeX of x[n] is also shown in Figure S5.15. We note 

that the given signal y[n]=x[n]x[n]. Therefore, the Fourier transform )( jeY of y[n] is  

 

Employing the approach used in Example 5.15, we can convert the above periodic convolution into an 

aperiodic signal by defining 

 

 

Then we may write 

 

This is the aperiodic convolution of the rectangular pulse )(ˆ jeX shown in Figure S5.15 with the periodic 

square wave )( jeX . The result of this convolution is also shown in Figure S5.15. 

 

 

 

 

 

 

 

 

 

From the figure, it is clear that we require –1+(2wc/π) to be 1/2. therefore, wc=3π/4. 

5.16 We may write 

 

 

where * denotes aperiodic convolution. We may also rewrite this as a periodic convolution 

 

where 

 

and 

 

 

 

(a) Taking the inverse Fourier transform of )( jeG , we get g[n]=(1/4)
n
u[n]. therefore, a=1/4. 

(b) Taking the inverse Fourier transform of )( jeQ , we get 
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This signal is periodic with a fundamental periodic N=4. 

(c) We can easily show that )( jeX is not conjugate symmetric. Therefore, x[n] is not real. 

5.17 Using the duality property, we have 

 

 

5.18 Knowing that 

 

 

we may use the Fourier transform analysis equation to write 

 

 

Putting ω=-2πt in this equation, and replacing the variable n by the variable k 

 

 

 

By comparing this with the continuous-time Fourier series synthesis equation, it is immediately apparent that 

ak=(1/3)(1/2)
|k|

 are the Fourier series coefficients of the signal 1/(5-4cos(2πt)). 

5.19 (a) Taking the Fourier transform of both sides of the difference equation, we have 

 

Therefore, 

 

(b) Using Partial faction expansion, 

 

 

Using Table 5.2, and taking the inverse Fourier transform, we obtain 

 

 

5.20 (a) Since the LTI system is causal and stable, a signal input-output pair is sufficient to determine the 

frequency response of the system. In this case, the input is x[n]=(4/5)
n
u[n] and output is y[n]=n(4/5)

n
u[n]. The 

frequency response is given by 

)( jeH = )( jeY / )( jeX , 

Where )( jeX  and )( jeY  are the Fourier transforms of x[n] and y[n] respectively. Using Table 5.2, we 

have 

 

Using the differentiation in frequency property (Table 5.1, Property 5.3.8), we have 

 

Therefore, 

 

 

(b) Since )( jeH = )( jeY / )( jeX , we may write 

 Taking the inverse Fourier transform of both sides 

 

 

5.21 (a) The given signal is 
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  x[n]=u[n-2]- u[n-6]=δ[n-2]+δ[n-3]+ δ[n-4]+δ[n-5] 

Using the Fourier transform analysis eq. (5.9), we obtain 

 

 

(b) Using the Fourier transform analysis eq. (5.9), we obtain 

 

 

 

（c）Using the Fourier transform analysis (5.9),we obtain 

X(e
jw

)= jwnn

n

e




 )
3

1
(

2

 

= n

n

jwe )
3

1
(

2






 

=
)3/11(

1

9

2

jw

jw

e

e



e
2jw

 

 (d ) using the Fourier transform analysis eq.(5.9),we obtain 

X(e
jw

)= jwn

n

n en 




0

)4/sin(2 
 

=- jwn

n

n en



0

)4/sin(2   

= ])2/1()2/1[(
1 4/4/

0

jwnnjnjwnnj

n

n eeee
j

 




   

= ]
)2/1(1

1

)2/1(1

1
[

2

1
4/4/ jwjjwj eeeej  




  

(e) using the Fourier transform analysis eq(5.9),we obtain     

            X(e
jw

)= jwn

n

n en 



 
0

|| ]8/)1(cos[)2/1(   

                 = ]
)2/1(1)2/1(1

[
2

1
8/

8/

8/

8/

jwj

j

jwj

j

ee

e

ee

e







 







 

+ ]
)2/1(1)2/1(1

[
4

1
8/

4/

8/

4/

jwj

jwj

jwj

jwj

ee

ee

ee

ee
















 

（f）the given signal is  

x[n]=-3 ]3[3]2[2]1[]1[]2[2]3[3  nnnnnn   

Using the Fourier transform analysis eq(5.9),we obtain 
jwjwjwjwjwjwjw eeeeeeex 3223 3223)(    

(g) the given signal is  

][
2

1
][

2

1
)cos()2/sin(][ 2/2/2/2/ jnjnnjnj eeee

j
nnnx     

therefore 

)( jwex = 
j

 [ )2/(  w - )2/(  n ]+  [ )1( w + )1( w ] 0≤|w|<  

 (h) the given signal is  

X[n]= )3/7cos()3/5sin( nn    

= )3/cos()3/sin( nn    

= ][
2

1
][

2

1 3/3/3/3/ jnjnnjnj eeee
j

    

)( jwex = 
j


 [ )3/()3/(   ww ]+  [ )3/(  w + )3/(  w ] 0≤|w|<  

(i) x[n] is periodic with periodic 6. the Fourier series coefficients of x[n] are give by 





5

0

)6/2(][
6

1

n

knj

k enxa   
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



4

0

)6/2(

6

1

n

knje   

]
1

1
[

6

1
)6/2(

3/5

kj

kj

e

e











  

Therefore, form the result of section 5.2 

)( jwex =



l

2 )2
6

2
(]

1

1
[

6

1
)6/2(

3/5

lw
e

e
kj

kj

















) 

(j) using the Fourier transform analysis eq.(5.9) we obtain 

w

FTn

cos35

4
)

3

1
( ||


  

Using the differentiation in frequency property of the Fourier transform 

2

||

)cos35(

sin12
)

3

1
(

w

w
jn FTn


  

Therefore 

X[n]= ||)
3

1
( nn  ||)

3

1
( n

2)cos35(

sin12

cos35

4

w

w
j

w

FT







  

(k)we have 

























||
5

,0

5
||,1

)(
)5/sin(

][ 11

w

w

ex
n

n
nx jwFT

 

)}2/()2/({)()2/cos()2/7cos(][ 22   wwexnnnx jwFT  

In the range  ||0 w , therefore, if ][][][ 21 nxnxnx  ,then 

)( jwex =periodic convolution of )(1

jwex and )(2

jwex  

Using the mechanics of periodic convolution demonstrated in example 5.15 ,we obtain  

In the range  ||0 w  












otherwise

w
ex jw

,0

10

7
||

10

3
,1

)(


 

5.22 (a) Using the Fourier transform analysis eq(5.8),we obtain 

)]4/sin()4/3[sin(
1

2

1

2

1
][

4/3

4/

4/

4/3

nn
n

dwedwenx jwnjwn
















 


  

（b）comparing the given Fourier transform analysis eq(5.8),we obtain 

x[n]= ]10[]3[4]2[2]1[3][  nnnnn   

(c) Using the Fourier transform analysis eq(5.8),we obtain 

)2/1(

)1(

2

1
][

1

2/
















n

dweenx

n

jwnjw







  

(d) the given Fourier transform is  

)3(sincos)( 22 wwex jw   

                   =
2

)3cos(1

2

)2cos(1 ww 


  

= jwjwjwjw eeee 3322

4

1

4

1

4

1

4

1
1    

Comparing the given Fourier transform with the analysis eq(5.8),we obtain 

]3[
4

1
]3[

4

1
]2[

4

1
]2[

4

1
][][  nnnnnnx   

（e）this is the Fourier transform of a periodic signal with fundamental frequency 
2

  

Therefore its fundamental periodic is 4. also, the Fourier series coefficient of this  

Signal are k

ka )1( . Therefore, the signal is given by 





3

0

2/32/)2/( 1)1(][
k

njnjnjnjkk eeeenx   
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(f) the given Fourier transform may be written as  











 
00

)5/1()5/1()5/1()(
n

jwnn

n

jwnnjwjw eeeex  

= 









 
00

)5/1()5/1()5/1(5
n

jwnn

n

jwnn ee  

Compare each of two terms in the right-hand side of the above equation with the  

Fourier transform analysis eq. (5.9) we obtain  

][)
5

1
(]1[)

5

1
(][ 11 nununx nn    

(g) the given Fourier transform may be written as  

jwjw

jw

ee
ex

 





4/11

9/7

2/11

9/2
)(

 

Therefore 

][)
4

1
(

9

7
][)

2

1
(

9

2
][ nununx nn 

 

(h) the given Fourier transform may be written as 

jwjwjwjwjwjw eeeeeex 5

5

4

4

3

3

2

2 3

1

3

1

3

1

3

1

3

1
1)(    

Compare the given Fourier transform with the analysis eq. (5.8), we obtain 

]5[
243

1
]4[

81

1
]3[

27

1
]2[

9

1
]1[

3

1
][][  nnnnnnnx   

5.23 (a) we have form eq.(5.9) 







n

j nxex 6][)( 0  

(b) note that y[n]=x[n+2] is an even signal. Therefore , )( jweY is real and even . This  

Implies that 0)(  jweY .furthermore , form the time shifting property of the Fourier  

Transform we have )()( 2 jwwjjw eXeeY  .therefore, wjjw eeX 2)(   

 (c) we have form eq. (5.8) 





 dwejXx w )(|0|2  

Therefore  





4)(  dweX jw  

(d) we have form eq.(5.9) 







n

nj nxeX 2)1]([)(   

(e) from table 5.1, we have  

)}(Re{]}[{ jwFT eXnxv   

Therefore, the desired signal is 2/]}[][{]}[{ nxnxnxv  .this is as shown in figure  

 

 

 

 

 

 

 

 

 

 

(f) (i) from Parseval’s theorem we have  









  28|][|2|)(| 22 nxdweX jw  

(ii) using the differentiation in frequency property of the Fourier transform we obtain 

dw

edX
jnnx

jw
FT )(

][   

Again using Parseval’s theorem, we obtain 

1 

1/2 

-1/2 

-4 

-7 

1 1 1 

1/2 

-1/2 

-1 0 1 4 

7 

Ev{x[n]} 

Figure s 5.23 

2 
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







  316|][|||2|

)(
| 222 nxndw

dw

edX jw

 

5.24 (1) for )}(Re{ jweX to be zero, the signal must be real and odd. Only signal (b) and (i) 

Are real and odd. 

(2) )}(Im{ jweX  to be zero , the signal must be real and even Only signal (b) and (h) 

Are real and even  

(3) Assume )()( jwjawjw eXeeY  . Using the time shifting property of the Fourier transform 

We have y[n]=x[n+a] , if )( jweY is real, then y[n] is real and even (assuming that x[n] is real). 

Therefore, x[n] has to be symmetric about a/ this is true only for signal (a) , (b), (d) , (e) , (f) , and (h). 

(4) since  ]0[2)( xdweX jw 





,the given condition is satisfied only is x[n]=0. this is  

True for signal (b), (e) , (f) , (h) , and (f). 

(5) )( jweX is always periodic with period 2 . Therefore ,all signal satisfy this condition  

(6) since 





n

j nxex ][)( 0 ,the given condition is satisfied only the samples of the signal  

Add up to zero. This is true for signal (b), (g) , and (i).       

5.25. if the inverse Fourier transform of )( jweX is x[n], then  

)(
2

][][
]}[{][ wA

nxnx
nxvnx FT

e 


   

And 

)(
2

][][
]}[{][ wjB

nxnx
nxodnx FT

o 


  

Therefore , the inverse Fourier transform of B(w) is ][0 njx . Also, the inverse Fourier transform of 

jwewA )( is. Therefore, the time function corresponding to the inverse  

Fourier transform of jwewAwB )()(  will be ][]1[ 0 njxnxe  . this is as shown in the  

figure s 5.25  

 

 

 

 

 

 

 

 

5.26 (a) we may express )(2

jweX  as 

              )}(Re{)}(Re{)}(Re{)( )3/2(

1

)3/2(

112

   wjwjjwjw eXeXeXeX  

Therefore  

]1]}[[{][ 3/23/2

12

 jj eenxvnx   

(b) We may express X3(e
jω
)as  

                       jjj eXeXeX 113 ImIm . 

 Therefore, 

                 ][12][][ 113 nxOdeenxOdnx
nnjnj    . 

(c)We may express α as      

                         α=
 

 
 












6

1

/6

01

0
1







 jj

eX

d

edX
j

j

j

. 

 (d)Using the fact H(ejω) is the frequency of an idea lowpass filter with cutoff frequency 
π/6,we may draw X4(e

jω) as show in figure s5.26 
 

 

 

 

                                                           

Figure S5.26 

Figure s 5.25 

1 

-1/2 

-4 

1 1 1 

-1/2 

-1 0 1 

  π 
-Л/6                                

-Л                            

1 
Л/6 

)}({ 4

jeXe

 
)}({ 4

jeZe  

ω 

 

 

 

 

0 -Л -Л -Л/6 Л/6 
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5.27.(a) W(ejω) will be the periodic convolution of X(ejω) with P(ejω).The Fourier transforms 
are sketched in figure S5.27. 

     (b) The  Fourier transform of Y(ejω)  of y[n] is Y(ejω)= P(ejω) H(ejω). The LTI system with 
unit sample response h[n] is an idea lowpass filter with cutoff  

        Frequency π/2 .Therefore, Y(ejω) for each choice of p[n] are as shown in  
        Figure S5.27.Therefore,y[n] in each case is : 

(i) y[n]=0 

(ii) y[n]=    
22

2/cos1

2

2/sin

n

n

n

n







 
  

(iii) y[n]=    
n

n

n

n









2

2/cos2/sin
22

  

(iv) y[n]=   2
4/sin

2 








n

n



  

(v)  
 











n

n
ny



 2/sin

4

1  

5.28.Let 

               


jjjj eYedeGeX  

 1
2

1 . 

 Taking the inverse  Fourier transform of the above equation ,we obtain 

              g[n]x[n]= δ[n]+δ[n-1]=y[n]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              Figure S5.27 

(a) If x[n]=(-1)
n
, 

                   g[n]=δ[n]-δ[n-1]. 

(b)If  x[n]=(1/2)
n
u[n],g[n] has to be chosen such that  

               g[n]=



















otherwiseanyvalue

n

n

n

,

1,0

1,2

0,1

  

     Therefore, there are many possible chosen for g[n]. 

5.29.(a)Let the output of the system be y[n].We known that  

                    X(ejω)= X(ejω) H(ejω). 
      In this part of the problem  

)( jeZ

 

(a-ii) 

1/2 

0 Л -Л   

)( jeZ

 

0 

j/2 

Л -Л   

(a-iii) 

)( jeZ  

-Л 
-Л/2 Л 

Л/2 0   

(a-v) 
)( jeZ  

0   

(a-iv) 
)( jeZ  

Л/2 -Л/2 0   

(b-ii) 

)( jeZ  

Л

/2 

0 

j/2 

-Л/2   

(b-iii) 

)( jeZ  

Л/2 -Л/2 0 

 

(b-iv) 

 jeZ  

Л/2 -Л/2   

(b-v) 

)( jeZ  

1/2 

0 
-Л Л   

(a-iv) 

 jeZ  

 

1/2 

-Л Л 0 

(a-i) 


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                    H(e
jω
)=

je
2
11

1  . 

（i）we have 

jw

jw

e

eX




4

3
1

1
)(

 

Therefore  

]

2

1
1

1
][

4

3
1

1
[)(

jwjw

jw

ee

eY
 



 

jwjw ee  








4

3
1

3

2

1
1

2
 

Taking the inverse Fourier transform, we obtain 

][)
2

1
(2][)

4

3
(3][ nununy nn   

(ii) we have 
 

]

2

1
1

1
][

)
4

3
1(

1
[)(

2 jwjw

jw

ee

eY
 



 

2)
4

1
1(

3

4

1
1

2

2

1
1

4

jwjwjw eee  










 

Taking the inverse Fourier transform, we obtain 

][)
4

1
)(1(3][)

4

1
(2][)

2

1
(4][ nunnununy nnn   

(iii) We have 

      




 ))12((2)(  kweX jw  

Therefore 

]

2

1
1

1
][))12((2[)(

jw

jw

e

kweY




 

  
 






 ))12((
3

4



kw

 

Taking the inverse Fourier transform, we obtain 

nnx )1(
3

2
][   

 (b) Given 

][)
2

1
(

2

1
][)

2

1
(

2

1
][ 2/2/ nuenuenh njnj    

we obtain 

jwjjwj

jw

eeee

eH
 






2/2/

2

1
1

2/1

2

1
1

2/1
][



 

(i)We have 
              

jw

jw

e

eX




2

1
1

1
)(

 

Therefore 

]

2

1
1

1
][

2

1
1

2/1

2

1
1

2/1
[][

2/2/ jwjwjjwj

jw

eeeee

eY
 








 

jwjjwjwj ee

C

e

B

ee

A

 










2/2/

2

1
1

2

1
1

2

1
1 

 

Where  A=-j/[2(1-j)], B=1/2, and C= 1/[2(1+j)], therefore 

    ][)
2

1
(

2

1
][)

2
(

)1(2

1
][)

2
(

)1(2
][ nunu

j

j
nu

j

j

j
ny nnn 







  

(ii)In this case  
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              ][])
2

1
(4[

3

)2/cos(
][ nu

n
ny n

  

(c) Here  
jwjwjwjwjwjw eeeeHeXeY 22 213)()(][    

+ wjjwjwjw eeee 52 4226    

+ jwjwjwjw eeee 223 345   

Therefore， 

]2[3]3[]4[]5[3][  nnnnny   

+ ]5[4]3[2]1[6][]1[  nnnnn   

5.30 (a) the frequency response of the system is as shown in figure s5.30 

(b) the Fourier transform in figure s5.30 )( jweX  of x[n] is as shown in figure s5.30 

(i) the frequency response )( jweH  is as shown in figure s5.30. therefore , y[n]=sin( n/8) 

(ii)the frequency response )( jweH  is as shown in figure s5.30. therefore , 

y[n]=2sin( n/8)-cos( n/4) 

(iii) the frequency response )( jweH  is as shown in figure s5.30. therefore , y[n]= 

1/6sin( n/8)-1/4 cos( n/4) 

 

 

 

 

 
 

 

 

 

 

 

 

 

 (iv)The frequency response H(e
jω

) is as show in Figure S5.30. Therefore, y[n]=-sin(πn/4). 

(c) The frequency response H(e
jω

) is as show in Figure S5.30. 

(i) The signal x[n] is periodic with period 8.The Fourier series coefficients of the signal are  

ak=
knj

n

enx
)8/2(7

0

8
1 ][






 

         The Fourier transform of this signal is  

                X(e
jω

)= )8/2(2 ka
k

k  




. 

        The Fourier transform  Y(e
jω

) of the output is  Y(e
jω

)=X(e
jω

) H(e
jω

).Therefore, 

Y(e
jω

)=  )4/()4/()(2 110   aaa  

         In the range  0 . Therefore, 

           y[n]=        4/cos2/12/14/1
8
54/

1

4/

10 neaeaa jnj   


. 

(ii) The signal x[n] is periodic with periodic 8.The Fourier series coefficients of the signal are  

 



7

0

8/2

8
1 ][

n

kj

k enxa   

         The Fourier transform of this signal is  

                              8/22 kaeX
k

k

j   




 

The Fourier transform Y(e
jω

) of the output is Y(e
jω

) =X(e
jω

) H(e
jω

).Therefore, 

    Y(e
jω

)=  )4/()4/()(2 110   aaa  

In the range  0 .Therefore, 

               y[n]=        4/cos2/12/14/1
8
14/

1

4/

10 neaeaa jnj   


. 

(iii) Again in this case, the Fourier transform X(e
jω

) of  the signal x[n] is of the form show in 

part(i).Therefore, 

ω -π π -ω ω 

 jeH

 

Figure S5.30 

n/j 
π 

-π/8 

-π/4  π/4 
w 

π/4 
w 

 jeZ

 

π/4 π/8 
w 

-n/j 

π 

π/6 

1 
b-i 

-π πw 

 jeH  

π/2 

1 

2 

-π/2 
w 

 jeH

 

1/b 

b-iii 

-π/6 π/2 

 jeH  

ω 
ω -π/3 π/3 

1 
 jeH

 

ω 

1/2j 

b-iv 

-π/2 π/6 π/2 

 jeH
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y[n]=        4/cos2/12/14/1
8
14/

1

4/

10 neaeaa jnj   


. 

(iv) in this case, the output is  

y[n]=h[n]*x[n]=   
 

  
 1

13/sin

1

13/sin










n

n

n

n







  

5.31.(a) Form the given information, it is clear that when the input to the system is a complex 

exponential of frequency ω0 ,the output is a  complex exponential of the same frequency 

but scaled by the |ω0|.Therefore,the frequency response of the system is  

                  H(e
jω

)= |ω|, for   00 . 

(b)Taking the inverse Fourier transform of the frequency response ,we obtain  

             h[n]=   







deeH njj

2
1  

                
 

 







 










2

1

0

1

02
1

0

2
1

1cos

cos

n

n

dn

dede njj






















 

5.32   From the synthesis equation (5.8) we have  

                












 


deH j

1
2

1         00
2

1
212 hhdeH j 













 


 

Also, since  
                 jjFT eHeHnhnh 2121 *   

we have  

                
02121 *

2

1


 n

jj nhnhdeHeH 







  

therefore ,the question here amounts to asking whether it is true that  
                       

02121 *00



n

nhnhhh  

since  nh1
 and  nh2

 are causal , this is indeed true. 

5.33  (a) Taking the Fourier transform of the given difference equation we have                        
   

  





j
j

j
j

e
eX

eY
eH





2

1
1

1
 

(b) The Fourier transform of the output will be       jjj eHeXeY   . 

(i) In this case      
 





j

j

e

eX




2

1
1

1
 . 

   Therefore  
                 

 









































 


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j

ee

eY

2

1
1
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2

1
1

1
 

 jj ee  







2

1
1

21

2

1
1

21
 

           Taking the inverse transform, we obtain  

                              nununy

nn




















2

1

2

1

2

1

2

1  . 

        (ii) In this case       
 





j

j

e

eX




2

1
1

1
 . 

Therefore ,    
 

2

2

1
1

1






















 



j
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e

eY

 

Taking the inverse Fourier transform  , we obtain 

                       nunny

n











2

1
1  , 
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         (iii) In this case         jj eeX 
2

1
1  . 

Therefore            1jeY  . 

Taking the inverse Fourier transform  , we have  

                     nny   . 

         (iv) In this case  

   jj eeX 
2

1
1

 . 

Therefore     
 


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
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je
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Taking the inverse Fourier transform , we obtain  

                    
     nunny

n










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(c) (i) We have     
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
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j
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e 
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     Taking the inverse Fourier transform . we obtain 

                        1
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1


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
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
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  (ii) We have 

                  
 
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     Taking the inverse Fourier transform , we obtain 
                     

   nuny

n
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
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 .(iii) We have 
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Taking the inverse Fourier transform , we obtain 

                    nunununny
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
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(iv) We have  
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   Taking the inverse Fourier transform , we obtain  
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                  3
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3


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5.34  (a) Since the two systems are cascaded , the frequency response of the overall system is  

                        jjj eHeHeH 21  
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
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        Therefore , the Fourier transform of the input and output of  the overall system are related by  
                  
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        Cross-multiplying and taking the inverse Fourier transform , we get 

                        123
8

1
 nxnxnyny  . 

     (b) We may rewriter the overall frequency response as  
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         Taking the inverse  Fourier transform , we get  
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5.35 (a ) Taking the Fourier transform of both sides of the given difference equation we obtain  
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      In order for  jeH  to be one . we must ensure that  

                  jj aeeb   1  

 cos21cos21 22 aabb   

this is possible only if ab  . 

   (b) The plot is as shown Figure S5.35 

   (c) The plot is as shown Figure S5.35 
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Taking the inverse Fourier transform we obtain 
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This is as sketched in Figure S5.35 

5.36 (a) The frequency responses are related by the following expression  
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 
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(b) (i) Here    jj eeH 
4

1
1

 . Therefore ,   

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     the difference equation relating the input  nx  and output  ny  is  

                             nxnyny  1
4
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      the difference equation relating the input  nx  and output  ny  is  
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    the difference equation relating the input  nx  and output  ny  is  

                               1
2

1
1

4

1
 nxnxnyny  

 (iv) Here   
















   jjjjj eeeeeH 22

8

1

4

5
1

8

1

4

1
1  .therefore  

  
















   jjjjj eeeeeG 22

8

1

4

1
1

8

1

4

5
1

 therefore 

 
    



jj

j

ee
eG

 





411

2

211

2
1  

and 
                

       nununng

nn




















4

1
2

2

1
2

 

since 

                
   

 


































jj

jjw

j

j
j

ee

ee

eX

eY
eG

2

2

8

1

4

1
1

8

1

4

5
1  

  the difference equation relating the input  nx  and output  ny  is  
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the difference equation relating the input  nx  and output  ny  is  
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                         2
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5
 nnnny   

and the difference equation relating the input  nx  and output  ny  is 
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 (c) The frequency response of the given system is  
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The frequency response of the given system is 
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Clearly ,  ng  is not a causal impulse response  

  If we delay this impulse response by 1 sample , then it become causal . Furthermore the 

output of  the inverse system will then be  1nx  .the impulse response of this causal system is  
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5.37 Give that 

                              jFT eXx   

(i)Since  

             jwn

n

jw enxeX 




 ][)(
 

We may write 

               )(* jweX jwn

n

enx 




 ][*  

Comparing with the analysis eq 5.9),we conclude that 

 x*[n]  FT
X*(

jwe
) 

  Therefore 

                  e{x[n]} =
2

][*][ nxnx  FT
 

2

)(*)( jwjw eXeX     
  

(ii)Since 

                jwn

n

jw enxeX 




 ][)(
 

We may write 

             jwn

n

jw enxeX 




   ][)(  

Therefore, 

 x[-n]  FT
X(

jwe
) 

Form the previous part we know that 

 x*[n]  FT
X*(

jwe
) 

Therefore, putting these two statements together we get 

  x*[-n]  FT
X*(

jwe ) 

 (iii) Form our previous part we know that 

 {x[n]} =
2

][][ nxnx  FT
 

2

)()( jwjw eXeX          

5.38. From the synthesis equation (5.8) we obtain 

x[n]=
w

jwnjw deeX



)(

2

1  

   =
w

jwnjw deeX


 0
)(

2

1 +
w

jwnjw deeX 




 0
)(

2

1  
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Since x[n] is real.  X(
jwe

)= X*(
jwe ). Therefore 

x[n] =
w

jwnwnjw deeeXe




 0
})}{({

1 +
w

jwnwnjw deeeX
j





 0
})}{(Im{

2

 

            =
w

jw dwneXe 


 0
)cos(2)}({

1 -
w

jw dwneX


 0
)sin()}(Im{

1  

Therefore, 

B(w)= 
)cos()}({

1
wneXe jw



, and  - )sin()}(Im{
1

wneX jw


 

5.39. Let y[n]=x[n]*h[n]. Then 

jwn

n

jw enhnxeY 




 ]}[*][{)(  

       = jwn

n k

eknhnx 








   ][*][
 

       = jwn

k n

eknhkx 








   ][][  

       = )( jweH jwk

k

enx 




 ][
 

       )()( jwjw eXeH  

5.40. Let y[n]=x[n]*[n]. Then using the convolution sum 







k

khkxny ][][][
                (S5.40-1) 

Using the convolution property of the Fourier transform, 

                         ]0[y =
w

jwjw deHeX )()(
2

1




      (S5.40-2)  

Now let h[n]=x*[-n].Then )(*)( jwjw eXeH  Substituting in the right-hand sides of 

equations(S5.40-2)and equating them, 







k

kxkx ][*][ w

jwjw deXeX )(*)(
2

1




       

Therefore， 

                       






2|][|
n

nx w

jw deX




2|)(|
2

1  

Now let h[n]=z*[-n].Then )(*)( jwjw eZeH  .Substituting in the right-hand sides of equation 

(S5.40-1)and(S5.40-2) and equation then. 

                 






)(*][ kzkx
n

w

jwjw deZeX



)(*)(

2

1  

5.41. (a)The Fourier transform )( jweX of the signal x[n] is 

                     )( jweX = jwn

n

enx 




 ][
= jwn

Nn

n

enx 



10

0

][
 

Therefore, 

                )( 2 NkjeX  = kn
Nn

nn

N
j

enx
)2(0

0

1

][







 

Now, we may write the expression for the FS coefficients of x[n] ][~ nx as 

       
0

0

1
(2 / ) (2 / )1 1

[ ] [ ]
n N

j N kn j N kn

k

N n n

a x n e x n e
N N

 
 

 

  

     

(Because x[n]= [ ]x n in the range 
0 0 1n n n N     ) . Comparing the above equation with eq. (S5.41-1), we get 

                            2 /1
( )j k N

ka X e
N

  

(b) (i) From the given information,    

         ( )jwX e =1+
jwe

+
2 jwe

+
3 jwe

 

                =
(3/ 2)j we

{
(3/ 2)j we +

(3/ 2)j we
}+

(3/ 2)j we
{

(1/ 2)j we +
(1/ 2)j we

} 

                =2
(3/ 2)j we

{cos(3w/2)+cos(w/2)} 

(ii)From part (a), 

        1
ka

N


2 /( )j k NX e  = 1

N

2 (3/ 2)2 /j k Ne  {cos(6 k/(2N))+cos( k /N)} 
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5.42.(a) 
0( ) 2 ( )jwP e w w   for | |w  . This is as shown in Figure S5.42 

 

 

 

 

 

(b) From the multiplication property of the Fourier transform we have  

                  ( )1
( ) ( ) ( )

2

jw jw j wG e X e P e d










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                         =
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1
( )2 ( )

2

jwX e w w d





 
 

   

                         = 0( )
( )

j w w
X e


 

5.31. (a) Using frequency shift and linearity properties  

                   
( )( ) ( )

( )
2

j w jw
jw X e X e

V e
 

  

(b) Let y[n]=v[2n]. Then  

               ( ) [2 ]jw jwn

n

Y e v n e






   

Since the odd-indexed samples of v[n] are zero, we may put m=2n in the above equation to get  

               / 2 / 2( ) [ ] ( )jw jwm jw

m

Y e v m e V e






   

(Note that the substitution of n by 2m is balid only if the odd-indexed samples in the summation are zero.) 

(c) x[2n] is a new sequence which consists of only the even indexed samples of x[n].v[n] is a sequence whose 

even-indexed samples are equal to x[n].The odd-indexed samples of v[n] are zero .v[2n] is a new sequence 

which consists of only the even indexed samples of v[n].This implies that v[2n] is a sequence which consists 

of only the even indexed samples of x[n].This idea is illustrated in Figure S5.43. 

  From part (a). 
( / 2 ) / 2( ) ( )

( )
2

j w jw
jw X e X e

G e
 

  

5.44. (a). The signal  is show in Figure S5.44. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5.44 

(i) Taking the inverse Fourier transform, the signal  is  

                2 1[ ] [ 1]x n x n   

(ii) Taking the inverse Fourier transform ,the signal  is 

2 1[ ] [ 3/ 2]x n x n  = sin( /3) sin( / 2)cos(3 / 4) cos( / 2)sin(3 / 4)n n n       

This is as shown in Figure S5.44. 

(b). Form part (a), 
                  

2 1[ ] [ 1] ( )x n x n w nT T     

   Also, 
                   

3 1[ ] [ 3/ 2] ( 3 / 2)x n x n w nT T     

   Therefore,   =-1 and  =3/2. 
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5.45. From the Fourier transform analysis equation  

                        ( ) [ ]jw jwn

n

X e x n e






   

(a). Comparing the equation for 1( )x t  with the above equation ,we obtain  

                   (2 /10)

1( ) ( )j tx t X e   

   Therefore is as 1( )x t is as shown in Figure S5.45. 

(b). Comparing the equation for 2 ( )x t  with the equation ( )jwX e  ,we obtain  

                        (2 /10)

2 1( ) ( ) ( )j tx t X e x t    

       Therefore is as 2 ( )x t is as shown in Figure S5.45. 

(C). We know that od{x[n]}=(x[n]-x[-n])/2. Therefore. 

                        ( ) ( )
{ [ ]}

2

jw jw
jwn

n

X e X e
od x n e

 





   

   Comparing this with the given equation for 3( )x t  .we obtain  

                       
(2 /8) (2 /8)

3

( ) ( )
( )

2

j t j tX e X e
x t

  
  

   Therefore 3( )x t  is as shown in Figure S5.45. 

(d). We know that Re{x[n]}=(x[n]+x*[n])/2. Therefore, 

                       ( ) *( )
e{ [ ]}

2

jw jw
jwn

n

X e X e
x n e

 





   

  Comparing this with the given equation for  .we obtain 

                       
(2 / 6) (2 / 6)

4

( ) *( )
( )

2

j t j tX e X e
x t

  
  

   Therefore   is as shown in the Figure S5.45. 

5.46. (a). Let x[n]= 
n u[n] .Then X(

jwe ) 1

1 jwe 



 .Using the differentiation in frequency property, 

                      ( )

2
[ ]

(1 )

jw
jw

X eFTn

jw

w

d e
n u n j

d e









 


 

        Therefore, 

                ( )

2

1
( 1) [ ] ( )

(1 )

jwX eFTn jw

jw

w

d
n n u n j X e

d e


 
   


 

(b). From part (a),it is clear that the result is true for r=1 and r=2. Let us assume that it is also true for 

k=r-1. We will now attempt to prove that result is true for k=r. We have  

          
1 1 1

( 2) 1
[ ] [ ] ( )

!( 2)! (1 )

FTn jw

r r jw r

n r
x n u n X e

n r e



   

 
  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 Figure S5.45 

From the differentiation in frequency property, 

         
1)1(

)1(
][1











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nnx
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j
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r 


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  . 

Therefore, 
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rjw

FTr

er

nxn

)1(

1

)1(

]1[)1( 1













 . 

The left hand side of the above expression is 

         ][][
)!1(!

)!1(

)1(

]1[)1( 1 nxnu
rn

rn

r

nxn
r

nr 







  


 . 

Therefore, we have shown that the result is valid for r if it is valid for 1r . Since, 

We know that the result is valid for 2r ,we may conclude that it is valid for 3r , 

4r , and so on. 

 5.47. (a) If )()( )1(   jj eXeX  then )( jeX  is periodic with a period of 1.But we already know that )( jeX  is 

periodic with a period of 2 .This is only possible if )( jeX  is a constant for all  .This implies 

that ][nx  is of the form ][nk  where k is a constant. Therefore, the given statement is true. 

      (b) If )()( )(   jj eXeX  then )( jeX  is periodic with a period of  . We also know that )( jeX  is 

periodic with a period of 2 . Both these conditions can be satisfied even if )( jeX  has some 

arbitrary shape in the region 2/0   . Therefore, )( jeX  need not necessarily be a constant. 

Consequently, ][nx need not be just an impulse. Therefore, the given statement is false. 

     (c) We know from Problem 5.43 that the inverse Fourier transform of )( 2/jeX  is the 

sequence 2/])[][(][ nxenxnv nj .The even-indexed samples of ][nv  are identical to the 

even-indexed samples of ][nx . The odd-indexed samples of ][nv  are zero. If )()( 2/ jj eXeX  , 

then ][][ nvnx  .This implies that the even-indexed samples of ][nx  are zero. Consequently, ][nx  

does not necessarily have to be an    impulse . Therefore, the given statement is false. 

(d) From Table 5.1 we know that the inverse Fourier transform of )( 2jeX  is the time –expanded signal 

             



 


otherwise

nnx
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,4,2,0],2/[
][)2(

  

     If )()( 2 jj eXeX  , then 
][][ )2( nxnx 
. This is possible only if 

][nx
 is an impulse. Therefore, 

the given statement is true. 

5.48.  (a) Taking the Fourier transform of both equations and eliminating )( jeW ,we obtain  
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         Taking the inverse Fourier transform of the partial fraction expansion of the above expression, we 

obtain 
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1
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 . 

(b) We know that  
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Cross-multiplying and taking the inverse Fourier transform, we obtain 

           ]1[
2

1
][3]2[
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1
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3
][  nxnxnynyny  . 

5.49. (a) (i) Consider the signal ][][][ 21 nbxnaxnx  , where a and b are constants. Then ,  

          )()()( 21

 jjj ebXeaXeX  . Also let the responses of the system to ][1 nx  and ][2 nx  by ][1 ny  and 

][2 ny , respectively. Substituting for )( jeX  in the equation given in the problem and simplifying 

we obtain )()()( 21

 jjj ebYeaYeY  . Therefore, the system is linear. 

       (ii)Consider the signal ]1[][1  nxnx . Then )()(1

 jjj eXeeX   Let the response of the system to this 

signal be ][1 ny . From the given equation, 
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          Therefore, the system is not invariant. 

       (iii) If ][][ nnx  , 1)( jeX Then, 

                     jj eeY  2)(  

          Therefore, ]1[][2][  nnny   

(b) We may write 

                    





4/

4/

)( )()(
2

1
)(





 


deHeXeY jjj             Figure S5.49 

           Where  )( jeH  is as shown in the Figure S5.49. 

Using the multiplication property of the Fourier transform and Table 5.2,we obtain 
        

n

n
nxny

)4/sin(
][2][
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5.50. (a) (i) From the given information, 
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          Taking the inverse Fourier transform, we obtain 
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(ii) From part (a), we know that  
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   Cross-multiplying and taking inverse Fourier transform 
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7
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(b) Form the given information, 
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     We now want to find )( jeX when )
2

1
1/()2/1()(  jjj eeeY   . From the above equation we 

obtain  
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     Taking the inverse Fourier transform of the partial fraction expansion of the above 

expression, we obtain 
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5.51. (a)   Taking the Fourier transform of  ][nh  we obtain 
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          Cross-multiplying and taking the inverse Fourier transform we obtain 
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][  nxnxnynyny

 

(b) (i) Let us name the intermediate output ][n (See Figure S5.51).  

                              

x[n]                       w[n]                           y[n] 

 

 

 

 

          1/2     -1/2             -1/2    1 

 Figure S5.51 

     We may then write the following difference equations： 

＋ ＋ 

D 

＋ ＋ 

D 
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1
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1
][  nnnyny 

 

   and 

              ]1[
2

1
][]1[

3

1
][  nxnxnn   

   Taking the Fourier transform of both these equations and eliminating )( jeW , we obtain 
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   Cross-multiplying and taking the inverse Fourier transform we obtain 
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(ii) From (i) 
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(iii)Taking the inverse Fourier transform of the partial fraction expansion of )( jeH we obtain 
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][2][ nununnh nn    

5.52. (a) Since ][nh  is causal, the nonzero sample values of ][nh and ][ nh  overlap only at 0n  

Therefore, 
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In other words, 
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                (S5.52-1) 

Now note that if  

            )(][ jFT eHnh   

Then 

            )}({
2

][][
]}[{  jFT eHe

nhnh
nhv 


  

Clearly，we can recover ]}[{ nhv from )}({ jeHe From ]}[{ nhv we can use eq.(S5.52-1) to recover 

h[n]. Obviously, from ][nh we can again obtain )( jeH . Therefore, the system is completely specified 

by )}({ jeHe . 

(b) Taking the inverse Fourier transform of )}({ jeHe , we obtain 
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   Therefore, In other words 
               ]2[][][  nnnh   

    and 
                 21)( jj eeH   

    (c) Since ][nh  is causal, the nonzero sample values of ][nh  and ][ nh  overlap only at 0n .Therefore 
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       In other words, 
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       Now note that if 

                   )(][ jFT eHnh   

       Then 
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                   )}(Im{
2

][][
]}[{  jFT eHj

nhnh
nhd 


  

       Clearly, we can recover ]}[{ nhd from )}(Im{ jeH . From ]}[{ nhd we can use eq.(S5.52-1) to recover 

][nh (provided ]0[h is given).Obviously, from ][nh we can once again obtain )( jeH .Therefore, the 

system is completely specified by )}(Im{ jeH and h[0]. 

     (d) Let  sin)(Im{ jeH . Then  

                     ]1[
2

1
]1[

2

1
]}[{  nnnxd   

        Therefore,  

                     ]1[][]0[][  nnhnh   

        We may choose two different values for ]0[h (say 1 and 2) to obtain two different systems whose 

frequency responses have imaginary parts equal to sin . 

5.53. (a) The analysis equation of the Fourier transform is  
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njj enxeX  ][)(  

        Comparing with eq. (P5.53-2) , we have 
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N
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     (b) From the figures we obtain  
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1 21)(     

        and  

                     754322

2 221)( jjjjjjjj eeeeeeeeX     

        Now, 
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        and  
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Chapter 6 Answers 

6.6 (b) the impulse response h1[n] is as shown in figure s6.6,as was increase ,it is clear that the significant 

central lobe of h1[n] becomes more concentrated around the origin. consequently. h[n]=h1[n](-1)^n also 

becomes more concentrated about the origin. 

6.7 the frequency response magnitude |H(jw)| is as shown in figure s6.7.the frequency response of the 

bandpass filter G(jw) will be given by 

( ) {2 ( )cos(4000 )}G j FT h t t   

                          ( ( 4000 )) ( ( 4000 ))H j H j        

This is as shown in figure s6.7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-6000   -4000  -2000  0   2000    4000   6000  

                                   Figure S6.7 

(a) from the figure ,it is obvious that the passband edges are at 2000∏rad/sec and 6000∏rad/sec. this 

translates to 1000HZ and 3000Hz,respectively. 

(b) (b)from the figure ,it is obvious that the stopband edges are at 1600∏ rad/sec.this translates to 800Hz and 

3200 Hz, respectively. 

6.8 taking the Fourier transform of both sides of the first difference equation and simplifying, we obtain the 

frequency response H(e^jw)of the first filter. 
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Taking the Fourier transform of both sides of the second difference equation and simplifying ,we obtain the 

frequency response H1(e^
jw

) of the second filter. 
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This may also be written as 
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Therefore .the frequency response of the second filter is obtained bu shifting the frequency response of the first 

filter by ∏.although the first fitter has its passband between-wp and wp. Therefore, the second filter will have 

its passband between ∏-wp and ∏+wp. 

6.9 taking the Fourier transform of the given differential equation and simplifying .we obtain the frequency of 

the LTI system to be 
( ) 2

( )
( ) 5

j
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Y e
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X e j
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 
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Taking the inverse Fourier transform, we obtain the impulse response to be 
5( ) 2 ( ).th t e u t  

Using the result derived in section 6.5.1,we have the step response of the system 
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                   52
( ) ( )* ( ) [1 ] ( ).

5

ts t h t u t e u t  
 

The final value of the step response is 
                    2

( ) .
5

s  
 

We also have  
                    

052
( ) [1 ].

5

t
s e


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Substituting s(t0)=(2/5)[1-1/e^2],in the above equation ,we obtain t0=2/5 sec 

(a) we may rewrite H1(jw)to be  

                    
1

( ) ( )( 0.1).
40

H j j
j

 


 


 

we may then treat each of the two factors as individual first order systems and draw their bode magnitude 

plots .the final bode will then be asum of these two bode plots .this is shown in the figures6.10 

mathematically. the straight-line approximation of the bode magnitude plot is 
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 Figure S6.10 

 (b) Using a similar approach as in part (a),we obtain the Bode plot to be as shown in   

Figure S6.10. 

   Mathematically, the straight-line approximation of the BODE magnitude plot is 
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6.10. (a) We may rewrite the given frequency response 1H (j ) as 
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( )

( ) 50.5 25 ( 0.5)( 50)
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j j j j
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   
 

   

. 

We may then use an approach similar to the one used in Example 6.5 and in Problem 

6.11 to obtain the Bode magnitude plot(with straight line approximations) shown in  

Figure S6.11. 

 

 

 

 

 

 

 

 

 

Mathematically, the straight-line approximation of the Bode magnitude plot is  
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(b)We may rewrite the frequency response 2 H ( j ) as 

2H ( )j =
2

0.02
( 50)

( ) 0.2 1
j

j j


 

 
  
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. 

Again using an approach similar to the one used in Example 6.5,we may draw the 

Bode magnitude plot by treating the first and second order factors separately. This  

Givens us a Bode magnitude plot (using straight line) approximations as shown below: 

    Mathematically , the straight-line approximation of the Bode magnitude plot is 
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6.12. Using the Bode magnitude plot, specified in Figure P6.12(a). we may obtain an expression 

For  1H (j ). The figure shows that 1H (j ) has the break frequencies 1 =1, 2 =8,And 

3 =40. The frequency response rises as 20dB/decade after 1 .  At 2 ,this rise is canceled by a -20 

dB/decade contribution. Finally, at 3  ,an additional -20 dB/decade. Contribution results in the 

subsequent decay at the rate of -20 dB/decade, therefore, we may conclude that 

1H ( )j = 1

2 3

( )

( )( )

A j

j j

 

   



 

. 

We now need to find A. Note that when  =0, 20
10 1log ( 0)H j =2.Therefore. 1H ( 0)j =0.05. From eq . 

(S6.12-1),we know that 

                             1H ( 0)j =
320

A . 

Therefore, A =640. This gives us  

1H ( )j = 640( 1)

( 8)( 40)

j

j j



 



 
. 

Using a similar approach on Figure P6.12(b), we obtain 

H(j )=
2

6.4

( 8)j 
. 

Since the overall system (with frequency response H(j )) is constructed by cascading  

Systems with frequency responses 1H ( )j  and 2H ( )j , 

                       H(j )= 1H ( )j 2H ( )j . 

Using the previously obtained expressions for H(j ) and 1H ( )j , 

                2H ( )j = H(j )/ 1H ( )j = 0.01( 40)

( 1)( 8)

j

j j



 



 

. 

6.13. Using an approach similar to the one used in the previous problem, we obtain 

H(j )= 320

( 2)( 8)j j  

 . 

(a) Let us assume that we desire to construct this system by cascading two systems with 

frequency responses 1H ( )j  and 2H ( )j , respectively. We require that 

                      H(j )= 1H ( )j 2H ( )j . 

We see that 1H ( )j = 40

( 2)j 

 and 2H ( )j = 8

( 80)j 
 

And 

           1H ( )j = 32

( 2)j 
 and 2H ( )j = 10

( 80)j 

 

are both valid combinations. 

(b) Let us assume that we desire to construct this system by connecting two systems with  

frequency responses 1H ( )j  and 2H ( )j  in parallel. We require that 
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            H(j ) = 1H ( )j  + 2H ( )j    

Using partial fraction expansion on H(j ) , we obtain 

H(j ) = 
160

39

( 2)j 

 -
160

39

( 80)j 

 

From the above expression it is clear that we can define 1H ( )j  and 2H ( )j  in only one 

way 

6.14. Using an approach similar to the one used in Problem 6.12 ,we have 

                     H(j )= 
25000( 0.2)

( 50)( 10)

j

j j



 



 

. 

The inverse to this system has a frequency response 

          1( )H j = 1

H(j  )
= 

4

2

0.2 10 ( j 50)( j 10)

( j 0.2)

 



  


. 

6.15. We will use the  results from Section 6.5 in this problem. 

(a) We may write the frequency response of the system described by the given differential 

      Equation as  

                        1( )H j =
2

1

( ) 4 4j j  
. 

 This may be rewritten as  

                        1( )H j =
2

1/ 4

( / 2) 2 ( / 2) 1j j  
. 

From this we obtain the damping ratio to be  =1.Therefore , the system is critically damped 

(b) We may write the frequency response of the system described by the given differential equation as  

                         2H ( )j =
2

7

5( ) 4 5j j  

. 

   This may be rewritten as  

                         2H ( )j =
2

7 / 5

( ) 2(2 / 5) ( ) 1j j  
. 

   From this we obtain the damping ratio to be  =2/5. Therefore , the system is under-damped. 

(c) We may write the frequency response of the system described by the given differential equation as  

                           3( )H j =
2

1

( ) 20 1j j  
. 

This may be rewritten as 

                         3( )H j =
2

1

( ) 2(10) ( ) 1j j  

. 

From this we obtain the damping ratio to be  =10. Therefore , the system is under-damped. 

(d) We may write the frequency response of the system described by the given differential equation as  

                           3( )H j =
2

7 (1/ 3)

5( ) 4 5

j

j j



 



 

. 

   The terms in the numerator do not affect the ringing behavior of the impulse response of this 

system .Therefore , we need to only consider the denominator in order to determine if the system.           

     is critically damped, under-damped ,or over-damped .We see that this frequency response has the 

same denominator as the one obtained in part (b).Therefore . this system is still  under-damped. 

6.16. The system of interest will have a difference equation of the form  

                                  y[n] –ay[n-1] =b x [n]. 

   Making slight modifications to the results obtained in Section 6.6.1,we determine the step response of 

this system to be 

                           
11

[ ]
1

na
b u n

a

 
 

 

 . 

 The final value of the step response will be b/(1-a). The step response exhibits oscillatory behavior only 

if a <1.Using this fact, we may easily show that the maximum overshoot in the step response occurs 

when n=0. Therefore , the maximum value of the step response is  

                        1
1

b
a

a




=b. 

Since we are given that the maximum, overshoot is 1.5 times the final value, we have  
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                         1.5
1

b

a
=b        a= 1

2
  

Also ,since we are given that the final value us 1, 

                        
1

b

a

=1             b= 3

2
 

Therefore, the difference equation relating the input and output will be  

                                y[n]+ 1

2
y[n-1]= 3

2
x[n]. 

6.17. We will use the results derived in Section 6.6.2 to solve this problem. 

(a)Comparing the given difference equation with eq. (6.56),we obtain 

                     = 1

2
, and    cos =-1. 

Therefore,  = ,and the system has an oscillatory step response. 

(b) Comparing the given difference equation with eq. (6.56),we obtain 

                     = 1

2
, and    cos =-1. 

Therefore,  =0,and the system has non- oscillatory step response. 

6.18. Let us first find the differential equation governing the input and output of this circuit. 

Current through capacitor =C ( )dy t

dx
. 

Voltage across resistor = RC ( )dy t

dx

. 

Total input voltage =Voltage across resistor + Voltage across capacitor 

Therefore , 

                         x(t)= RC ( )dy t

dx
+y(t). 

The frequency response of this circuit is therefore  

                         H(j )= 1

1RCj 

. 

Since this is a first order system , the step response has to be non oscillatory. 

6.19. Let us first find the differential equation governing the input and output of this circuit . 

Current through resistor and inductor = Current through capacitor = C ( )dy t

dx
. 

Voltage across resistor = RC ( )dy t

dx
. 

Voltage across inductor = LC
2

2

( )d y t

dt
. 

Total input voltage = Voltage across inductor + Voltage across resistor + Voltage across capacitor  

Therefore , 

                                 x(t)= LC 2

2

( )d y t

dt

+ RC ( )dy t

dx

+y(t). 

The frequency response of this circuit is therefore  

                 H(j )= 
2

1

( ) 1LC j RCj  
. 

We may rewrite this to be  

                 H(j )= 

2

1

( ) 2( / 2) / 1
1/ 1/

j j
R C L

LC LC

 
 

. 

Therefore, the damping constant  = ( / 2) /R C L . In order for the step response to have no  

oscillations, we must have   1 .Therefore, we require  

                 R 2 L

C
. 

6.20. Let us call the given impulse response h[n]. It is easily observed that the signal 1h [n]=h[n+2] is 

real and even . Therefore ,(using properties of the Fourier transform ) we know that the Fourier transform 

1( )jH e 
 of 1h [n] is real and even . Therefore 1( )jH e 

 has zero phase, we have  

                           ( )jH e 
= 2 . 
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Therefore , the group delay is  

                           ( )
d

d
 


 ( )jH e 

=2. 

6.21. Note that in all parts of this problem Y(j )= H(j )X(j )= 2 j X(j ). Therefore ,y(t)= 

2 ( ) /dx t dt    . 

(a) Here, x(t)= 
jte .Therefore, y(t)= 2 ( ) / 2 jtdx t dt je   .This part could also have been solved by 

nothing that complex exponentials are Eigen functions of LTI systems. Then when x(t)= 
jte ,y(t) should 

be y(t)=H(j1) 
jte =-2j

jte . 

(b)Here ,x(t)=sin( 0t )u(t).Then , 
( )dx t

dt
= 0 cos  ( 0 t)u(t)+ sin ( 0 t)  (t)= 0 cos  ( 0 t)u(t). 

Therefore ,y(t)= 2
( )dx t

dt
=2 0 cos  ( 0 t)u(t). 

(c) Here , Y(j )=X(j )H(j )=2/(6+j ) .Taking the inverse Fourier transform we obtain y(t)= 
62 ( )te u t . 

(d)Here, x(jw)=1/(2+jw). From this we obtain x(t)= 
2te

u(t). Therefore, y(t)= -2dx(t)/dt=4
2te

u(t) - 

2 (t). 

6.22 Note that       H(jw)=  /3 , 3 3

0,

jw w

otherwise

    
 

    (a)Since x(t)=cos(2 t+ ),X(jw)= 
ie    (w-2 )+

ie    (w+2 ). This is zero outside the region 

-3  < w<3  .Thus, Y(jw)=H(jw)X(jw)=(jw/3  )X(jw).  This implies that 

y(t)=(1/3 )dx(t)/dt=(-2/3)sin(2 t+ ). 

    (b)Since x(t)= cos(4 t+ ),X(jw)= 
ie    (w-4 )+

ie    (w+4 ). Therefore, the nonzero portions of 

X(jw) lie outside the range -3 < w<3 . This implies that Y(jw)=H(jw)X(jw)=0.Therefore,y(t)=0. 

    (c)The Fourier series coefficients of the signal x(t) are given by  

                        ka = 

0

1

T
 

0T  x(t) 0jkw t
e


 

        Where 0T =1 and 0w =2 / 0T =2 , Also, 

X(jw)=2 0( )k

k

a w kw




  

   The only impulses of X(jw) which lie in the region -3 < w<3  are at w=0,2 ,and 2 .Defining the 

signal 
lpx (t)= 0a =1/  , 1a =

*

1a =-1/(4j).Putting these into the expression for 
lpx (t) we obtain 

lpx (t)=(1/ )+(1/2)sin(2 t). Finally, y(t)=(1/3 )d
lpx (t)/dt=(1/3)cos(2 t). 

6.23. (a) From the given information, we have  

                        aH (jw)= 1,| |

0,
cw w

otherwise


 

        Using Table 4.2, we get 

                             ah (t)= sin( )cw t

t

. 

     (b)Here, 

                      ( )bH jw = aH (jw) 
jwTe  

       Using Table 4.1, we get 

                       ( )bh t = ah (t+T) 

       Therefore, 

                        bh (t)= 
sin[ ( )]

( )

cw t T

t T




 

     (c)Let us consider a frequency response 0H (jw) given by 
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                          0H (jw)= 1,| | / 2

0,
cw w

otherwise


 

       Clearly, 

                         
cH (jw)= 

1

2
[

0H (jw)*W(jw)], 

       Where 

                         W(jw)=j2  (w- / 2cw )-j2  (w- / 2cw ) 

       Therefore , from Table 4.1 

                         ch (t)= 0h (t)w(t)=[ sin( / 2)cw

t
][-2sin( cw t/2)]. 

6.24. If  (w)= 1k , where 1k  is a constant, then 

                             H(jw)=- 1k w+ 2k  

     Where 2k  is another constant. 

(a) Note that if h(t) is real, the phase of the Fourier transform  H(jw) has to be an odd function. 

Therefore, the value of 2k  in eq. (S6.24-1) will be zero. 

        Also, let us define 0H (jw)=|H(jw)|. Then 

                               0h (t)= sin(200 )t

t




 

(i) Here 1k =5. Hence, H(jw)=-5w. Then 

                             H(jw)=|H(jw)|
( )j H jwe = 0H (jw) 

5j we
 

           Therefore, 

                           H(t)= 0h (t-5)= sin[200 ( 5)]

( 5)

t

t








 

(ii) Here  1k =5/2. Hence, H(jw)=-(5/2)w. Then, 

                            H(jw)=|H(jw)| 
( )j H jwe = 0H (jw) 

(5/ 2)j we
 

            Therefore, 

                            h(t)= 0 h (t-5/2)= sin[200 ( 5 / 2)]

( 5 / 2)

t

t









 

(iii) Here  1k =-5/2. Hence, H(jw)=(5/2)w. Then, 

                            H(jw)=|H(jw)| 
( )j H jwe = 0H (jw) 

(5/ 2)j we  

            Therefore,  

                             h(t)= 0 h (t+5/2)= sin[200 ( 5 / 2)]

( 5 / 2)

t

t









 

 (b)If h(t) is not specified to be real, then H(jw) does not have to be an odd function. Therefore, the value 

of 2k  in eq. (S6.24-1) does not have to be zero. Given only |H(jw)| and  (w), 2k  cannot be determined 

uniquely. Therefore, h(t) cannot be determined uniquely. 

6.25 (a) We may write aH (jw) as 

                     aH (jw)= (1 ) 1

(1 )(1 ) 2

jw jw

jw jw

 


 
 

      Therefore, 

                    aH (jw)= 1tan [ ]w   

       And 

                     
2

( ) 1
( )

1

a
a

d H jw
w

dw w
   



 

       Since (0) 1 2 (1)a a    , ( )a w  is not a constant for w. Therefore, the frequency respons has 

nonlinear phase. 

(b) In the case, ( )bH jw  is the frequency response of a system which is a cascade combination of two 

system, each of which has a frequency response aH (jw). Therefore. 
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                      ( ) ( ) ( )b a aH jw H jw H jw   

And 

                  
2

( ) 2
( ) 2

1

a
b

d H jw
w

dw w
   


 

Since (0) 2 4 (1)b b    , ( )b w  is not a constant for all w. Therefore, the frequency response 

has nonlinear phase. 

(c)IN this case,  ( )cH jw  is again the frequency response of a system which is a cascade combination of two 

systems. The first system has a frequency response  ( )aH jw . While the second system has a frequency  

response   
0( ) 1/(2 )H jw jw  . Therefore, 

                    0( ) ( )b aH H jw H jw   

      And 

               0

2 2

( ) ( ) 1 2
( )

1 4

a
c

d H jw d H jw
w

dw dw w w
     

 

 

    Since (0) (3/ 2) (3/5) (0)c c    , ( )b w  is not a constant for all w . Therefore, the frequency 

response has nonlinear phase. 

6.26. (a) Note that ( )H jw =1-
0 ( )H jw , where 

0 ( )H jw  is 

                                   0 ( )H jw =1,0 | |

0,
cw w

otherwise

 

 

      Therefore, 

                                      h(t)=  (t)- 0 ( )h t  

 

 

 

 

 

 

 

From Table 4.2 .we have 

                      
0

sin( )
( ) cw t

h t
t

  

 Therefore, 

                      h(t)=  (t)- sin( )cw t

t
 

(b)A sketch of 0 ( )h t  is Figure S6.26. Clearly,  as cw  increase. h(t) becomes more concentrated about 

the origin. 

(c) Note that the step response is given by 

                            S(t)=h(t)*u(t)=u(t)-u(t)* 0 ( )h t  

   Also, note that 0 ( )h t  is the impulse response of an ideal lowpass filter. If 0 ( )s t = u(t)* 0 ( )h t  denotes 

the step response of the lowpass filter, we know from Figure 6.14 that 0 (0)s =0 and s =1. Therefore, 

                        S(0+)=u(0+)- 0 (0 )s  =1-(1/2)=1/2 

And 

                         S( )=u( )- 0 ( ) 0s    

6.27. (a) Taking the Fourier transform of both sides of the given differential equation, we obtain  

                              H(jw)= ( ) 1

( ) 2

Y jw

X jw jw



 

         The Bode plot is as shown in Figure S6.27 

(b)From the expression for H(jw) we obtain  

                              
1( ) tan ( / 2)H jw w   

Therefore, 

2

( ) 2
( )

4

d H jw
w

dw w
   


 

0 

0 ( )h t

 

t 
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(c) Since x(t)= ( )te u t
, 

                           X(jw)= 1

1 jw
 

     Therefore, 

                 Y(jw)=X(jw)H(jw)= 1

(1 )(2 )jw jw 
 

(d) Taking the inverse Fourier transform of the partial fraction expansion of Y(jw), we obtain 

                y(t)= 
2( ) ( )t te u t te u t   

(e) (i) Here, 

                     Y(jw)= 
2

1

(2 )

jw

jw





 

     Taking the inverse Fourier transform of the partial expansion of Y(jw), we obtain 

                    y(t)= 
2 2( ) ( )t te u t te u t   

   (ii) Here, 

                        Y(jw)= 1

(1 )jw
 

       Taking the inverse Fourier transform of Y(jw), we obtain 

                           y(t)= ( )te u t
 

(iii)Here, 

                  Y(jw)= 
2

1

(1 )(2 )jw jw 
 

    Taking the inverse Fourier transform of the partial expansion of Y(jw), we obtain 

                   y(t)= ( )te u t
+ 2 21

( ) ( )
2

t te u t te u t   

 6.28. (a)  The Bode plots are as shown below 

      (b)   We may write the frequency response of (iv) as  

                                     H(jw)= 11/10 1

1 10jw




 

           Therefore. 

                                          h(t)= 11 1
( ) ( )

10 10

te u t t   

             and 

                                      s(t)=h(t)*u(t)= 11 1
(1 ) ( ) ( )

10 10

te u t u t   

            Both h(t) and s(t) are as shown in Figure S6.28. 

               We may write the frequency response of (vi) as  

                                       H(jw)= 
9 /10 1

1 10jw



 

                  Therefore, 

                                        h(t)= 
9 1

( ) ( )
10 10

te u t t   

                and 

20 10log | ( ) |H jw   

-10.4 

-13.6 

100 10 1 0.1 

W(rad/sec) 

 

W(rad/sec) ( )H jw

 / 4
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         s(t)=h(t)*u(t)= 
9 1

(1 ) ( ) ( )
10 10

te u t u t   

             Both h(t) and s(t) are as shown in Figure S6.28 
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Chapter 7 Answers 
7.1  From the Nyquist sampling theorem , we know that only if X (j w)=0 for |w| > ws/2 will be signal be 

recoverable from its samples. Therefore, X(jw)>5000л. 

7.2  From the Nyquist theorem ,we know that the sampling frequency in this case must be at least ws=2000

п.In other words ,the sampling period should be at most T=2п/ (ws)=1＊10
-3

.Clearly ,only (a) and (e) satisfy 

this condition. 

7.3  (a) We can easily show that X(j w)=0 for |w| >4000п.Therefore, the Nyquist rate for this signal is 

wN=2(4000п)=8000п. 

    (b)From the Tables 4.1 and 4.2 we know that X(j w) is a rectangular pulse for which  

X(j w)=0 for |w| > 4000п.Therefore, the Nyquist rate for this signal is wN =2(4000п)=800п. 

    (c) From the Tables 4.1 and 4.2 we know that X(j w) is the convolution of two rectangular pulses each of 

which is zero for |w| > 4000п.Therefore ,X(j w)=0 for |w| >8000пand the Nyquist rate for this signal is 

wN=2(8000п)=16000п. 

7.4  If the signal x(t) has a Nyquist rate of wo ,then its Fourier transform X (j w)=0 for |w| > wo/2. 

(a) From chapter 4,
 
 

y(t) = x (t) + x (t-1) FT Y (jw) = X (jw) + e
-jwt 

X (jw). 

Clearly, we can only guarantee that Y (jw) =0 for |w| > wo/2. Therefore, the Nyquist rate for y(t) is also wo. 

(b) From chapter 4, 

   y(t) = 
dt

tdx )(  FT  Y (jw)= jw X(jw). 

Clearly, we can only guarantee that Y (jw) =0 for |w| > wo/2. Therefore, the Nyquist rate for y(t) is also wo. 

(c) From chapter 4, 

   y(t) =x
2
(t) FT  Y (jw)= (1/2п)[X(jw)*X(jw)] 

Clearly, we can only guarantee that Y (jw) =0 for |w| > wo. Therefore, the Nyquist rate for y(t) is also 2wo. 

(d) From chapter 4, 

y(t)=x(t)cos (wot) FT  Y (jw)= (1/2)X(j(w- wo)) +(1/2)X(j(w+ wo)). 

Clearly, we can guarantee that Y (jw) =0 for |w| > wo+ wo/2. Therefore, the Nyquist rate for y(t) is 3wo. 

7.5  Using Table 4.2, 

       p(t) FT

T

2






K

TK )/2(   

From Table 4.1 

p(t-1) FT

T

2  e
-jw T

jk

k

e
T

k





2

)
2

(




  . 

Since y(t)=x(t)p(t-1),we have 

       Y (jw)= (1/2п)[X(jw)*FT{P(t-1)}] 

            =(1/T) T
jk

K

e
T

kjX





2

))
2

((




   

   Therefore, Y(j ) consists of replicates of X(j ) shifted by k2 /T and added to earth other (see Figure 

S7.5).In order to recover x(t) from y(t).we need to be able to isolate one replica of X(j ) from Y(j ).                             

 

 

 

 

 

Figure S7.5 

From the figure ,it is clear that this is possible if we multiply Y(j ) with  

                       



 


otherwise

T
jH

c

,0

||,
)(


  

Where ( 2/0 )< c <(2 /T) - ( 2/0 ). 

7.6 Consider the signal w(t)=x 1 (t)x 2 (t).The Fourier transform W(j ) of w(t) is given by  

                    W(j )=
2

1  )(*)( 21  jXjX . 

  Since 0)(1 jX  for | |≥ 1 and X 2 (j )=0 for | |≥ 2 , we may conclude that W(j )=0 for  

| |≥ 1 + 2 .Consequently，the Nyquist rate for w(t) is s =2( 1 + 2 ).Therefore ,the maximum sampling 

- 2/0  2/0  0 
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period which would still allow w(t) to be recovered is T=2 /( s )= /( 1 + 2 ). 

7.7    We note that  

           x 1 (t) =h 1 (t)*{ 





n

nTtnTx )()(  } 

Form Figure 7.7 in the book ,we know that the output of the zero-order hold may be written as  

         x 0 (t)=h 0 (t)* { 





n

nTtnTx )()(  } 

where h 0 (t) is as shown in Figure S7.7 By taking the Fourier transform of the two above equations, we have  

            X 1 (j )=H 1 ( j )X p ( j ) 

            X 0 (j )=H 0 ( j ) X p ( j ) 

We now need to determine a frequency  response H d ( j ) for a filter which produces x 1 (t) at its output when 

x 0 (t) is its input. Therefore, we need 

              X 0 (j ) H d ( j )= X 1 (j ) 

The triangular function h 1 (t) may be obtained by convolving two rectangular pulses as shown in Figure S7.7 

 

 

 

 

 

 

 

 

 

                                      Figure S7.7 

Therefore,  

            h 1 (t)={(1/ T ) h 0 (t+T/2)}*{( 1/ T ) h 0 (t+T/2)} 

Taking the Fourier transform of both sides of the above equation, 

            H 1 ( j )=
T

1
e

Tj
 H 0 ( j ) H 0 ( j ) 

Therefore 

           X 1 (j )= H 1 ( j ) X p ( j ) 

                 =
T

1
e

Tj
 H 0 ( j ) H 0 ( j ) X p ( j ) 

                 =
T

1
e

Tj
 H 0 ( j ) X 0 (j )   

Therefore 

            H d ( j )=
T

1 e
Tj

 H 0 ( j )=e
2/jwT

T

T



 )2/sin(2  

7.8 (a) Yes, aliasing does occur in this case .This may be easily shown by considering the sinusoidal term of x(t) 

for k=5. This term is a signal of the form y(t)=(1/2)
5

sin(5 t).If x(t) is sampled as T=0.2, then we will always 

be sampling y(t) at exactly its zero-crossings (This is similar to the idea presented in Figure 7.17 of your 

textbook). Therefore ,the signal y(t) appears to be identical to the signal (1/2)
5

sin(0 t)  for frequency 5  

is a liased into a sinusoid of frequency 0 in the sampled signal. 

(b) The lowpass filter performs band limited interpolation on the signal 


x(t) .But since aliasing has already 

resulted in the loss of the sinusoid (1/2)
5

 sin(5 t),the output will be of the form  

            x  (t)= k

k

)
2

1
(

4

0




 sin(k t) 

The Fourier series representation of this signal is of the form  

0 

h 0 (t) 

1 

T 

t 

0 
t 

T -T 

h1(t)

  

0 

1/ T  

T/2 -T/2 
t 

0 T/2 

 

-T/2 

 

1/ T  

t 

= * 
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  x  (t)= 


4

4k

ka e )/( tkj        

 0 

Where   a k =     -j(1/2)
1k
   

 j(1/2)
1k

 

7.9  The Fourier transform X(j ) of x(t) is as shown in Figure S7.9 

 

 

 

 

 

                           Figure S7.9 

           We know from the results on impulse-train sampling that  

                       G(jw)= 




  kjX
T

((
1

s)),  

Where T=2 / s =1/75.therefore,G(jw) is as shown in Figure S7.9 .Clearly, G(jw)=(1/T)X(j )=75 

X(j ) for | | 50 . 

7.10  (a)  We know that x(t) is not a band-limited signal. Therefore, it cannot undergo impulse-train 

sampling without aliasing. 

(b) Form the given X(j ) it is clear that the signal x(t) which is bandlimited. That is, X(j )=0 for  

| |> 0 .Therefore, it must be possible to perform impulse-train sampling on this signal without 

experiencing aliasing. The minimum sampling rate required would  be s =2 0 ,This implies that the 

sampling period can at most be T=2 / s = / 0  

(c) When x(t) undergoes impulse train sampling with T=2 / 0 ,we would obtain the signal g(t) with Fourier 

transform  

G(jw)= 
T

1






k

TkjX ))/2((   

This is as shown in the Figure S7.10 

 

 

 

 

 

 

 

Figure S7.10 

It is clear from the figure that no aliasing occurs, and that X(jw) can be recovered by using a filter with 

frequency response 

  T   0   0  

H(jw)=     0   otherwise 

Therefore, the given statement is true. 

7.11 We know from Section 7.4 that 

           X d (
je )= 

T

1






k

c TkjX ))/2((   

(a) Since X d (
je ) is just formed by shifting and summing replicas of X(jw),we may argue that if 

X d (
je ) is real , then X(jw) must also be real 

(b) X d (
je ) consists of replicas of X(jw) which are scaled by 1/T,Therefore,if X d (

je ) has a 

maximum of 1, then X(jw) must also be real. 

(c) The region   ||4/3 in the discrete-time domain corresponds to the region 

TT /||)4/(3    in the discrete-time domain. Therefore ,if  X d ( je )=0 for 

  ||4/3 ,then X(jw)=0 for  2000||1500  ,But since we already have X(jw)=0 for 
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 2000||  ,we have X(jw)=0 for  1500||   

(d) In this case, since   in discrete-time frequency domain corresponds to 2000  in the 

continuous-time frequency domain, this condition translates to X(jw)=(j( -2000 )) 

7.12 Form Section 7.4 ,we know that the discrete and continuous-time frequencies   and   are related by 

 =  .Therefore, in this case for  =
4

3 ,we find the corresponding value of   to 

 =
4

3

T

1 =3000 /4=7500  

7.13  For this problem ,we use an approach similar to the one used in Example 7.2 .we assume that    

     x c (t)=
t

Tt



 )/sin(  

The overall output is  

y c (t)= x c (t-2T)= 
)2(

)]2)(/sin[(

Tt

TtT







   

Form x c (t). We obtain the corresponding discrete-time signal x d [n] to be 

     x d [n]= x c (nT)= 
T

1 ][n  

also, we obtain from y c (t),the corresponding discrete-time signal y d [n] to be  

          y d [n]= y c (nT) =
)2(

)]2(sin[(





nT

n



  

We note that the right-hand side of the above equation is always zero when n 2.When n=2 ,we 

may evaluate the value of ratio using L
,
Hospital

,
s rule to be 1/T ,Therefore  

y d [n]= 
T

1 ]2[ n  

We conclude that the impulse response of the filter is 

h d [n]= ]2[ n  

7.14 For this problem ,we use an approach similar to the one used in Example 7.2.We assume       that 

             x c (t)= 
t

Tt



 )]/sin[(  

The overall output is  

       y c (t)= )
2

(
T

tx
dt

d
c  =

)2/(

)]2/()/[()/(

Tt

TtTCOST







 -
2))2/((

)]2/)(/sin[(

Tt

TtT







  

Form  x c (t) , we obtain the corresponding discrete-time signal x d [n] to be 

x d [n]= x c (nT)= 
T

1 ][n  

Also, we obtain from yc(t),the corresponding discrete-time signal yd[n] to be  

  Yd[n]=yc(nT)=
)2/1(

)]2/1(cos[)/(





nT

nT



 - 
)2/1(

)]2/1(sin[





nT

n



  

The first term in rigπht-hang side of the above equation is always zero because cos[π(n-1/2)]=0, therefore, 

yd[n]= 
)2/1(

)]2/1(sin[





nT

n



  

We conclude that the impulse response of the filter is  

   hd[n]= 
)2/1(

)]2/1(sin[





nT

n



  

7.15.  in this problem we are interested in the lowest rate which x[n] may be sampled without the possibility 

of aliasing, we use the approach used in Example 7.4 to solve this problem. To  find the lowest rate at which 

x[n] may be sampled while avoiding the possibility of aliasing, we must find an N such that 

     
(2

2


N


)

7

3      N≤7/3 

   therefore, N can at most be2. 

7.16 Although the signal x1[n]=2sin(πn/2)/( πn) satisfies the first tow conditions, it does not satisfy the third 

condition . This is because the Flurries transform X1(e
jω

) of this signal is rectangular pulse which is zero for 

π/2<|ω|<π/2 We also note that the signal x[n]=4[sin(πn/2)/(πn)]
2
 satisfies the first tow conditions. From 

our numerous encounters with this signal, we know that its Fourier transform X(e
jω

) is given by the periodic 
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convolution of X1(e
jω

) with itself. Therefore, X(e
jω

) will be a triangular function in the range 0≤|ω|≤π. This 

obviously satisfies the third condition as well. T therefore, the desired signal is x[n]=4[sin(πn/2)/(πn)]
2
. 

7.17 In this problem .we wish to determine the effect of decimating the impulse response of the given filter by 

a factor of 2. As explained in Section 7.5.2 ,the process of decimation may be broken up into two steps. In the 

first step we perform impulse train sampling on h[n] to obtain 

         Hp[n]



k

h[2k]δ[n-2k] 

The decimated sequence is then obtained using 

         h1[n]=h[2n]=hp[2n] 

Using eq (7.37), we obtain the Fourier transform Hp(e
jω

) of hp[n] to be  

         Hp(e
jω

)=(1/2) H(e
jω

)+(1/2)H(e
j(ω-π)

) 

 

              … 

 

 

This is as shown that the Fourier transform of decimated impulse response is  

                H1(e
jω

)=Hp(e
jω/2

) 

In other words , H1(e
jω

) is Hp(e
jω/2

) expanded by a factor of 2. This is as shown in the figure above. Therefore, 

h1[n]=h[2n] is the impulse response of an ideal lowpass filter with a passband gain of unity and a cutoff 

frequency of π/2 

7.18 From Figure 7.37,it is clear interpolation by a factor of 2 results in the frequency response getting 

compressed by a factor of 2. Interpolation also results in a magnitude sealing by a factor of 2. Therefore, in this 

problem, the interpolated impulse response will correspond to an ideal lowpass filter with cutoff frequency π/ 

and a passband gain of 2. 

7.19 The Fourier transform of x[n] is given by  

                                     1    |ω|≤ω1 

X(e
jω

)=   0    otherwise 

This is as shown in Figure 7.19. 

(a) when  ω1 ≤3π/5, the Fourier transform X1(e
jω

) of the output of the zero-insertion system is shown in 

Figure 7.19. The output w(e
jω

) of the lowpass filter is as shown in Figure 7.19. The Fourier transform of the 

output of the decimation system Y(e
jω

) is an expanded or stretched out version of W(e
jω

). This is as shown in 

Figure 7.19. 

therefore,     y[n]=
5

1

n

n



 )3/5sin( 1  

(b)  When ω1＞3π/5, the Fourier’s transform X1(e
jω

) of the output of the zero-insertion system is as shown 

in Figure 7.19 The output W(e
jω

) of the lowpass filter is as shown in Figure 7.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7.19 
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The Fourier transform of the output of the decimation system Y(e
jω

) bis an expanded or stretched out 

version of W(e
jω

) .This is as shown in Figure S7.19. Therefore, 

                y[n]= ][
5

1
n  

7.20 Suppose that X(e
jω

) is as shown in Figure S7.20, then the Fourier transform XA(e
jω

) of the output of the 

output of SA, the Fourier transform X1(e
jω

) of the output of the lowpass filter , and the Fourier transform XB(e
j

ω
) of the output of SB are all shown in the figures below. Clearly this system accomplishes the filtering task . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7.20 

(b) Suppose that X(e
jω

) is as shown in Figure S7.20 ,then the Fourier transform XB(e
jω

)  of the output of 

SB ,the Fourier transform X1(e
jω

)of the output of the first lowpass filter ,the Fourier transfore XA(e
jω

) of the 

output of SA ,the Fourier transform X2(e
jω

) of the output of the first lowpass filter are all shown in the figure 

below .Clearly this system does not accomplish the filtering task. 

7.21 

(a) The Nyquist rate for the given signal is 2×5000π=10000π. Therefore in order to be able to recover x(t) 

from xp(t) ,the sampling period must at most be Tmax=2π/10000π=2×10
-4

 sec .Since the sampling 

period used is T=10
-4＜Tmax,x(t) can be recovered from xp(t). 

(b) The Nyquist rate for the given signal is 2×15000π=30000π. Therefore in order to be able to recover x(t) 

from xp(t) ,the sampling period must at most be Tmax=2π/30000π=0.66×10
-4

 sec .Since the sampling 

period used is T=10
-4＞Tmax, x(t) can not be recovered from xp(t). 

(c) Here,Im{X(jω)} is not specified. Therefore, the Nyquist rate for the signal x(t) is indeterminate. This 

implies that one cannot guarantee that x(t) would be recoverable from xp(t). 

(d) Since x(t) is real,we may conclude that X(jω)=0 for |ω|＞5000. Therefore the answer to this part is 

identical to that of part (a) 

(e) Since x(t) is real, X(jω)=0 for |ω|＞15000π. Therefore the answer to this part is identical to that of part 

(b) 

(f) If X(jω)=0 for |ω|＞ω1,then X(jω)*X(jω)=0 for |ω|＞2ω1,Therefore in this part X(jω)=0 for |ω|＞

7500. The Nyquist rate for this signal is 2×7500π=15000π. Therefore in order to be able to recover x(t) 

from xp(t) ,the sampling period must at most be Tmax=2π/15000π=1.33×10
-4

 sec .Since the sampling 

period used is T=10
-4＜Tmax, x(t) can be recovered from xp(t). 

(g)  

If |X(jω)|=0 for ω＞5000π,then X(jω)=0 for |ω|＞5000π. Therefore the answer to this part is 

identical to that of part (a). 

7.22 Using the properties of the Fourier transform, we obtain 

            Y(jω)=X1(jω)X2(jω). 

Therefore, Y(jω)=0 for |ω |＞1000π .This implies that the Nyquist rate for y(t) is2×1000π=2000

π.Therefore, the sampling period T can at most be 2π/(2000π)=10
-3

sec. Therefore we have to use T<10
-3

sec 

in order to be able to recover y(t) from yp(t). 

7.23 

(a) We may express p(t) as  

                        P(t)=p1(t)-p1(t-△); 

Where p1(t)= 





k

kt )2(        now, 
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           P1(jω)=


  






k

)/( 
 

Therefore, 

          P(jω)= P1(jω)-e
-j 

P1(j )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Is as shown in figure S7.23. 

   Now,  

           Xp(jω)= )](*)([
2

1



jPjX  

Therefore, Xp(jω) is as sketched below for △<π/(2ωM),The corresponding Y(jω) is also sketched in 

figure S7.23. 

(b) The system which can be used to recover x(t) from xp(t) is as shown in FigureS7.23. 

(c) The system which can be used to recover x(t) from x(t) is as shown in FigureS7.23. 

(d) We see from the figures sketched in part (a) that aliasing is avoided when ωM≤π/△.therefore, △max=

π/ωM. 

7.24 we may impress s(t) as s(t)=s(t)-1,where s(t) is as shown in Figure S7.24 we may easily show that 

    s


(j ) = 







k

Tk
k

Tk
)/2(

)/2sin(4


  

From this, we obtain  

  S(j  )(2)()  jS


 







k

Tk
k

Tk
)/2(

)/2sin(4


 -2 )(  

Clearly, S(jω) consists of impulses spaced every 2π/T. 

(a) If △=T/3, then  

   S(j ) 





k

Tk
k

k
)/2(

)3/2sin(4


 -2 )(  

Now, since w(t)=s(t)x(t), 

 



2

1
)( jW 






k

XTkjX
k

k
)(2))/2((

)3/2sin(4


  

Therefore, W(jω)consists of replicas of X(jω) which are spaced 2π/T apart. Tn order to avoid aliasing,ωW 

should be less thatπ/T. Therefore, Tmax=2π/ωW. 

(b)  If △=T/3, then  

 

( )x t  

cos( / )t   

 y t
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mw

 

mw  

（c） 

 1 jw
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Figure S7.23 

(a) 
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Figure S7.24 
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mw
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S(j ) 





k

Tk
k

k
)/2(

)4/2sin(4


 -2 )(  

we note that S(jω)=0 for k=0,±2, ±4,…..This is as sketched in Figure S7.24. 

Therefore, the replicas of X(jω)in W(jω) are now spaced 4π/T apart. Tn order to avoid aliasing,ωW should 

be less that2π/T. Therefore, Tmax=2π/ωW. 

7.25 Here, xT(kT) can be written as  

            XT(kT)= 


 



k

nTx
nk

nk
)(

)(

)](sin[



  

Note that when n≠k, 

0
)(

)](sin[






nk

nk



  

And when n=k, 

1
)(

)](sin[






nk

nk



  

Therefore, 

              xτ(kT)=x(kT) 

7.26.  We note that  

           p(jω)=
T

2
δ(ω－k2π/T)  

Also, since xp(t)=x(t)p(t). 

                   Xp(jω)= 1

2
{ x(jω) * P(jω)} 

         = 1

T

x(j(ω－k2π/T)) 

This is sketched in Figure S7.26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure S7.26   

Note that as T increase, 
T

2 －ω2 approaches zero. Also, we note that there is aliasing 

When 

           2ω1-ω2<
T

2 －ω2<ω2 

If 2ω1-ω2≥0(as given) then it is easy to see that aliasing does not occur when 

      0≤
T

2 －ω2≤2ω1－ω2 

For maximum T, we must choose the minimum allowable value for
T

2 －ω2 (which is zero). 

This implies that Tmax=2π/ω2. We plot xp(jω) for this case in Figure S7.26. Therefore, 

A=T, ωb=2π/T, andωa=ωb－ω1 

4π/T 2π/T 0 －2π/T 

 

－4π/T 

            

           

 

… … 

2π/T 
P(jω) 

2π/T－ω2 ω2 
ω1 0 

 
… … zp(jω) 

2π/T 2π/T－ω2 －2π/T 

ω 

- 

 

… … 
1/T 

zp(jω) for Tmax 

0 
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7.27.(a) Let x1(jω) denote the Fourier transform of the signal x1(t) obtained by multiplying 

x(t) with e
-jω0t 

Let x2(jω) be the Fourier transform of the signal x2(t) obtained at 

the output of the lowpass filter. Then, x1(jω), x2(jω),and xp(jω),are as shown in 

Figure S7.27 

(b) The Nyquist rate for the signal x2(t) is 2×(ω2－ω1)/2=ω2－ω1.Therefore, the 

   sampling period T must be at most 2π/(ω2－ω1) in order to avoid aliasing. 

            

 

 

 

                  

 

 

              

         xp(t)           

 

 

             Figure S7.27 

 

 (c) A system that can be used to recover x(t) form xp(t) is shown in Figure S7.27. 

7.28.   (a) The fundamental frequency of x(t) is 20π rad/sec.From Chapter 4 we know that the 

          Fourier transform of x(t) is given by 

            X(jω)=2π
k





 akδ(ω－20πk). 

This is as sketched below. The Fourier transform xc(jω) of the signal xc(t) is also 

Sketched in Figure S7.28. 

  Note that 

       P(jω)=
3

2

5 10




3( 2 /(5 10 ))
k

k  






   

And 

         xp(jω)= 1

2
[ xc(jω)* p(jω)] 

Therefore, xp(jω) is as shown in the Figure S7.28.Note that the impulses from adjacent 

Replicas of xc(jω) add up at 200π.Now the Fourier transform x(e
jΩ

) of the sequence x[n] is given by 

       x(e
jΩ

)= xp(jω)|ω=ΩT. 

This is as shown in the Figure S7.28. 

   Since the impulses in x(e
jω

) are located at multiples of a 0.1π,the signal x[n] is 

Periodic. The fundamental period is 2π/(0.1π)=20.  
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0 
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ω 

Zp(jω) 1/T 
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2TH1(j ω )
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e
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2  
( )c jw
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
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(b) The Fourier series coefficients of X[n] a 

T

2 ( 1

2
)
k
 ,  k=0, 1, 2,…., 9 

      ak=  4

T

 ( 1

2

)
10

 ,  k=10 

7.29.  From Section 7.1.1 we know that  

          xp(jω)= 1

T
( ( 2 / ))

k

x j k T 




  

      x(
jwe ), Y(

jwe ), Yp(jω),and Yc(jω) are as shown in Figure S7.29. 

7.30.  (a) Since xc(t)=δ(t),we have  

         ( )cdy t

dt

+yc(t)= δ(t) 

         Taking the Fourier transform we obtain  

          jωY(jω)+ Y(jω)=1 

     Therefore , 

       Yc(jω)= 1

1j 

,   and yc(t) =e
-t
u(t). 

  (b) Since yc(t) =e
-t
u(t) , 

       y[n]= yc(nT)= e
-nT

u[n]. 

      Therefore, 

       Y(e
jω

)= 1

1 T je e  
 

 

 

 

 

                                            

 

 

 

 

 

        Also, 

     H(e
jω

)= ( )

( )

j

j

W e

Y e





= 1

1/(1 )T je e  
=1－e

－T
e
－jω 

   Therefore, 

        h[n]= δ[n]－e
－Tδ[n－1] 

7.31.   In this problem for the sake of clarity we will use the variable Ωto denote discrete     

frequency. Taking the Fourier transform of both sides of the given difference equation we obtain 

       H(
je 

)= ( )

( )

j

j

Y e

X e





= 1

1
1

2

je 

 

  Given that the sampling rate is greater than the Nyquist rate, we have  

( )p jw
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
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      x(
je 

)=
1

T
xc(jΩ/T),  for －π≤Ω≤π 

          Therefore, 

      Y(
je 

)=
1

( / )

1
1

2

c

j

x j T
T

e 





 

          For －π≤Ω≤π.From this we get 

          Y(jω)= Y(
jwe T

)= =
1

( )

1
1

2

c

j T

x j
T

e 





 

  For －π/T≤ω≤π/T. in this range, Y(jω)= Yc(jω).Therefore, 

          Hc(jω)=
( )

( )

c

c

Y j

X j




= 1/

1
1

2

j T

T

e 

 

7.32.   Let p[n]=
[ 1 4 ]

k

n k




 
.Then from Chapter 5, 

     p(
jwe )= e

-jω 2

4


( 2 / 4)

k

k  




 =
2

 2 / 4 ( 2 / 4)j k k

k

e    


 



  

  Therefore, 

     G(
jwe )= ( )1

( ) ( )
2

j jp e x e d


  









 

       =
3

2 / 4 ( 2 / 4)

0

1
( )

4

j k j k

k

e x e   



  

  Since x(
jwe ) =0 forπ/4≤|ω|≤π, G(

jwe ) is as shown in Figure S7.32. 

  

 

 

                 

 

 

 

 

 

 

 

 

 

 

              Figure S7.32 

     Clearly, in order to isolate just x(
jwe ) we need to use an ideal lowpass filter with  

         Cutoff frequencyπ/4 and passband gain of 4. Therefore, in the range |ω|<π, 

          4,   |ω|<π/4 

     H(e
jω

)=     

        0,   π/4≤|ω|≤π 

7.33.  Let y[n]=x[n] [ 3 ]
k

n k




 .Then  

      Y(e
jω

)=
3

( 2 /3)

0

1
( )

3

j k

k

x e  



  

   Note that sin(πn/3)/(πn/3) is the impulse response of an ideal lowpass filter with cutoff frequencyπ
/3 and passband gain of 3.Therefore,we now require that y[n] when passed through this filter should yield 

x[n].Therefore, the replicas of x(e
jω

) contained in Y(e
jω

) should not overlap with one another. This is 

possible only if x(e
jω

) =0 forπ/3≤|ω|≤π. 

7.34.   In order to make x(e
jω

) occupy the entire region from －πtoπ,the signal x[n]   

1 ( )jwe  

    -2         -        - /4 0  /4                 2            w 

2                           0                         2  

1/4 



 131 

      must be downsampled by a factor of 14/3.Since it is not possible to directly  

  downsample by a noninteger  factor, we first upsample the signal by a factor of 3. 

  Therefore, after the upsampling we will need toreduce the sampling rate by 14/3× 

  3=14. Therefore, the overall system for performing the sampling rate conversion is 

  shown in Figure S7.34. 

 

    

 

                    y[n] 

[ ]
2

n
x ,n=0, 3, 6,…           y[n]=p[14n] 

         ω[n]=    0,  otherwise                         Figure S7.34 

                                     

7.35 (a) The signals xp[n] and xd[n] are sketched in Figure S7.35. 

 

 

 

 

 

 

 

 

 

 

Figure S7.35 

 

(b) )(e
j

x p

  and )( j

d
ex  are sketched in Figure s7.35 

7.36. (a) Let us decnote the sampled signaled signal by xp(t). We have 

                    





n

p nTtnTxtx )()()(    

Since the Nyquist rate for the signal x(t) is T/2 ,we can reconstruct the signal from  

xp(t). From Section 7.2,we know that 
                                )(*)()( thtxtx p  

where     
                                

Tt

Tt
th

/

)/sin(
)(






 

Therefore 

                               
dt

tdh
tx

dt

tdx
p

)(
*)(

)(
  

Denoting 
dt

tdh )(  by g(t),we have 

                         





n

p nTtgnTxtgtx
dt

tdx
)()()(*)(

)(  

Therefore, 

                          
2

)/sin()/cos()(
)(

t

TtT

t

Tt

dt

tdh
tg




  

   (b) No. 

7.37.   We may write p(t) as  

p(t)=p1(t)+p1(t- ), 

where 

                               






k

Wkttp )/2()(1   

Therefore, 

                               )()1()( 1   jpejp j  

where 

                               





k

kWwjp )()(1   
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Let us denote the product p(t)f(t) by g(t).Then, 

                    )()()()()()()( 11 tftptftptftptg   

This may be written as  
                 )()()( 11  tbptaptg  

Therefore, 
                    )(()( 1

)   jpbeajG j   

with )(1 jp  is specified in eq.(s7.37-1). Therefore 

               )()( kwbeawjG
k

wjk  




   

We now have 

                       )()()()(1 tftptxty   

Therefore, 

 )(*)(
2

1
)(1 


 jxjGjY 

 

This give us 

                 ))((
2

)(1 kWjxbea
W

jY wjk    



 

In the range 0<ω<W, we may specify Y1(jω) as 

            ))(()()()(
2

)(1 Wjxbeajxba
w

jY wjk   


  

since )()()( 112  jHjYjY  , in the range 0<ω<W we may specify Y2(jω) as 

           ))(()()()(
2

)(2 Wjxbeajxba
jW

jY Wj   


  

Since ),()()(3 tptxty  in the range 0<ω<W we may specify Y3(jω) as 

               ))(()1()(2
2

)(3 Wjxejx
W

jY Wj   


  

Give that 0<W△<π,we require that )()()( 32  jkxjYjY   for 0<ω<W. 

That is 

    )())(()1(
2

)()(
2







jkxWjxe
W

jxjbjaa
W wj    

This implies that 

                         01   WjWj jbejae  

Solving this we obtain 

                               A=1,  b= -1, 

When W△=π/2. More generally, we  also get 

           a=sin(W△)+
)tan(

))cos(1(





W

W   and   
)sin(

)cos(1






W

W
b  

except when 2/W   Finally, we also get  )2/(1
2

jbja
W

k 

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Chapter 8 Answers 
8.1 Using Table 4.1, take the inverse Fourier transform of ( ( ))cY j   . This gives ( ) 2 ( ) cjw t

y t x t e . 

Therefore, 

              ( ) 2 cjw t
m t e . 

8.2 (a) The Fourier transform Y( jw ) of y(t) is given by  

               ( ) ( ( ))cY jw Xt j    . 

       Clearly, ( )Y jw  is just a shifted version of ( )X jw . Therefore, x(t) may be recovered from y(t) 

simply by multiplying y(t) by cjw t
e


. There is no constraint that needs to be placed on c to ensure 

that ( )x t  is recoverable from ( )y t . 

    (b) We know that  

                            1( ) Re ( ) ( )cos( ).cy t y t x t t   

The Fourier transform 1( )Y jw  of 1( )y t  is as shown in Figure S8.2 

               
1

1 1
( ) ( ( )) ( ( ))

2 2
c cY jw X j X j        

 

 

 

 

 

 

 

 

 

 

 

 

If  we want to prevent the two shifted replicas of ( )Y jw  from multiplied by cos(2000 )t , the output will be  

1

1
( ) ( )cos(2000 ) ( )sin(2000 )cos(2000 ) ( )sin(4000 )

2
x t g t t x t t t x t t       

The Fourier transform of this signal is  

1

1 1
( ) ( ( 4000 )) ( ( 4000 ))

4 4
X jw X j X j

j j
       . 

       This implies that 1( )X jw  is zero for | | 2000  . When ( )y t  is passed through a lowpass fiter 

with cutoff frequency 2000 ,the output will clearly be zero .Therefore ( )y t =0. 

8.4 Consider the signal 
       3( ) ( )sin(400 ) 2sin (400 )y t g t t t    

              

 

 

2 3sin(200 )sin (400 ) 2sin (400 )

sin(200 ) 1 cos(800 ) / 2 2sin(400 ) 1 cos(800 ) / 2

(1/ 2)sin(200 ) (1/ 4) sin(1000 ) sin(600 )

sin(400 ) (1/ 2) sin(1200 ) sin(400 )

t t t

t t t t

t t t

t t t

  

   

  

  

 

         

  

  

 

 If this signal is passed through a lowpass filter with cutoff frequency 400 ,then the output  

will be 

       
1 sin(200 )y t . 

8.5 The signal ( )x t  is as shown in Figure S8.5 
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( )Y j  

Figure S8.2 
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                     Figure S8.5 

The envelope of the signal ( )t  is as shown in Figure S8.5.Clearly,is we want to use asynchronous 

demodulation to recover the signal ( )x t ,we need to ensure that A is greater than the height h  of the highest 

sidelobe (see Figure S8.5).Let us now determine the height of the highest sidelobe.The first zero-crossing of 

the signal ( )x t  occurs at time ot  such that 

             
0 01000 , 1/1000.t t     

Similarly , the second zero –crossing happens at time 1t  such that 

          
1 11000 2 , 2 /1000.t t     

The highest sidelobe occurs at time 0 1( ) / 2t t .that is ,at time 
2 3/ 2000t  . At this time, the amplitude of 

( )x t is  

          
2

sin(3 / 2) 2000
( )

3/ 2000 3
x t



 
    

  Therefore , A should at least be 2000

3
.The modulation index corresponding to the smallest permissible 

value of A is  

               .

.

Max value
m

Min possible


of

value

( )x t

of

1

A
= 1000 3

2000 / 3 2




  

8.6 Let us  denote the Fourier transform of sin( ) /( )c t   by ( )H jw . This will be rectangular pulse which 

is nonzero only in the range | | c  . Taking The Fourier transform of the first equation given in the 

problem ,we have 

           
   

  

  

( ) ( )cos( ) ( )cos( ) ( )

( )cos( ) 1 ( )

(1/ 2) ( ( )) ( ( )) 1 ( )

c c

c

c c

G j FT x t t FT x t t H jw

FT x t t H jw

X j X j H jw

  



   

 

 

    

 

( )G j  is as shown in Figure S8.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Fourier transform of ( )cos( )cg t t  is also shown in Figure S8.6.Clearly,if we want to recover 

( )x t from ( )cos( )cg t t ,then we have to pass ( )cos( )cg t t  through an ideal lowpass filter with gain 

4 and cutoff frequency M .Therefore ,A=4. 

8.7 In Figure S8.7 ,we show ( )X j , ( )G j ,and ( )Q j .We also show a polt of  The Fourier transform 

of ( )cos( )cg t t ,then we need to ensure that (1) 0 2 c  , and (2) an ideal lowpass filter with 

passband gain of 2 and a cutoff frequency of c  is used to filter 0( )cos( )g t t . 

 

 

 

 

 

 

 

 

  c

 

1/2 ( )Q j  

0 

1/2 

c  

c    0 
c  

M  
0 

1/2 1/2 

M  

( )X j  
1 

( )G j

 

2 c
 

Figure S8.6 

M
 

c  
2 c  

c
 

 ( )cos cFT g t t

 1/4 
1/4 1/4 

M

 

    
c  

0 c  

( )X j  
( )G j  

1 
1/2 1/2 

0   

M  0 
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8.8 (a) From Figure S8.8,it is clear that ( )Y j  is conjugate-symmetric .Therefore, ( )y t  is 

real. 

   (b) This part of the problem explores the demodulation of SSB signals through synchronous demodulation. 

This idea is explored in more detail in problem 8.29. 

        Let us assume that we use the synchronous demodulation system shown in the Figure S8.8. The 

Fourier Transform 1( )Y j  of the signal 1( )y t  is shown in the Figure S8.8. Clearly, if we use an 

ideal lowpass filter with cutoff frequency c  and passhand gain of 2,we should recover the original 

signal ( )x t . Therefore, 

                   
2sin

( ) ( )sin( ) * c
c

t
x t y t t

t






 
  

 
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.9 Let the signal 1( )x t  and 2 ( )x t have Fourier Transform 1( )X j  and 2 ( )X j  as shown in the 

Figure S8.9. When SSB modulation is performed on the signals 1( )x t  and 2 ( )x t ,we  would obtain the 

signal 1( )y t  and 2 ( )y t , respectively .The Fourier Transform 1( )Y j  and 2 ( )Y j  of these signals 

would be as shown in the Figure S8.9(see Section 8.4 for details). 

(a) From the figure ,it is clear that the signal 1 2( ) ( ) ( )y t y t y t   would have a Fourier Transform 

( )Y j  which is as shown in the Figure S8.9. 

Figure S8.8 

-2Wc 2Wc 

M  
M  

-Aj 

-Wc 

Wc 

-Aj/2 

 

Aj/2 

-Wc 

Aj/2 Aj/2 

c  -Wc 

M  M  

0 

1/2 

  
0 M  

0 M  

( )X j  

A 
( ) ( )X j H j   

0 Wc 

Aj 

A/2 

FT{[x(t)*h(t)].coswc

t} 

X(jw) 

 

FT{y(t)sinwct} 

Figure S7.2 

 0( )cosFT g t t

 

0 
0 c   0 c   0  0 c    0  0 c    

Figure S8.7 
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      From this figure ,it is obvious that ( )Y j  is zero for | | 2 c  . 

  （b）In order to obtain 1( )x t  from ( )y t ,we have to first remove any contribution in ( )y t  from 

2 ( )x t .From the previously draw figures , it is clear that we can remove all contribution to ( )y t  from 

2 ( )x t  by first lowpass filtering ( )y t  using a lowpass filter with cutoff frequency c . We may then 

follow this by a synchronous demodulation system. This idea is illustrated in the Figure S8.9 . Therefore. 

           
1 0

sin sin
( ) ( )* cos *

2

c ct A t
x t y t t

t

 




  
   

  

 

   In order to determine the value of the gain A ,we first plot the Fourier Transform of 

1 0

sin
( ) ( )* cosctx t y t t

t






  
   

  

 .From this it is clear that A=4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.10 (a) From Section 8.5 ,we know that in order to avoid aliasing , 2 / 2 MT   , where M  is the 

Maximum frequency in the original signal and T is the period of ( )c t  .In this case , 
310T  . Therefore 

1000M  .Therefore , ( ) 0X j   for 1000  . 

(b)For Figure 8.24, we know that the Fourier Transform ( )Y j  of the signal ( )y t  consists of shifted 

replicas of ( )X j . The replica of ( )X j  centered around 0   is scaled by /T , where   is 

the width of each pulse of ( )c t .By using a lowpass filter , we may recover ( )X j  from ( )Y j . The 

lowpass filter needs to have a passband gain of /T  .In  this case ,this evaluates to 
3 310 /(0.25 10 ) 4   . 

8.11This signal ( )c t  is  

          

2 2

1 1 2 2( ) c c c cjw t jw t j w t j w t
c t a e a e a e a e

 

     
 

Since ( )c t  is real , k ka a

 . The Fourier Transform ( )Y j  of the signal ( ) ( ) ( )y t x t c t  is  

1 1 2 2( ) ( ( )) ( ( )) ( ( 2 )) ( ( 2 ))c c c cY j a X j a X j a X j a X j                  

    This is plotted in Figure S8.11. 

FDM Signal FT 

1/2 

2 c  2 c  c  
c  

1/2 1/2 

c  
c  c  2 c  2 c  

1/4 

2 c  c  2 c  c  
sin

( )* cosct
ctFT y t

t






  
  
  

 

Demodulator 

x(t) 
c  

c  c  c  0 0 

cos ct  

y(t) 

1 1 
 2z j  

c  c  
c  c  

 1z j  
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 (a)The Fourier transform G(jw) of g(t) is 

 1 1( ) ( ( )) * ( )C cG J a X J a j         

This is as shown in Figure s8.11   clearly, by comparing ( )G J and Y(JW).we know  

That g(t) may be obtained from y(t) by passing Y(t) through an ideal bandpass filter 

Which has a passband gain of unity in the range ( c /2)<= | | <= (3 / 2) . 

(b)if 1 1| | j aa a e then *

1 1| | ,j aa a e Also   

1 1

1 1

( ) ( )

1 1

1

1 1

( ) ( )

| | ( ) | |

2 | | cos( )

, 2 | |, .

c c

j t j t

c

j t a j t a

c c

g t a e a e t a

a e x t a e

a t a t a

therefore A a and a

 

 



 





 

  

 

  

 

 

8.11we need to first determine the maximum allowable period t .from section 8.5.1,we know 

That t should be chosen such that 
.

2
2 m

T




 in this case 
. 2000m  . Therefore, 

30.5 10 sec.T we   need to how 10 different pulses within a duration of T  

Therefore ,each pulled can be at most 
40.5 10 secwide    

8.12 (a) we know that  
1

(0) ( )
2

p p j d 





 

 

Therefore, 

1

1

2

1
2

1 1
(0) ( cos( ))

2 2 2

T

T

T
p d









 

 

(b)since p(j )statistics eq. (8.28),we know that it must have zero –crossings every 1T  

Therefore,, 

1( ) 0, 1, 2,p kT fork     

8.13 given 

( ) cos( cos )c my t t m t    

cos( )cos( cos( )) sin( )sin( cos( ))c m c mt m t t m t      

But since 
c mand  ,

2
m


 we may make the following approximations 

cos( cos( )) 1mm t   

And        sin( cos( )) cos( )m mm t m t   

Therefore , 

Y(t)= cos( ) sin( ) cos( )c c mt t m t    

cos( ) {sin[( ) ] sin[( ) ]}
2

c c m c m

m
t t t        

 

Therefore for w>0, 

( ) ( ) ( ( )) ( ( ))
2 2

c c m c m

m m
y j w

j j

 
                    

   1.cz j a 

 

 z j

 

  

 

0  c
 

c   

Figure s8.11 

 z j  
 z j  



 

   1.2cz j a 

 

0

 

c  
c  2 c

 
2 c

 



 

  
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8.14  when a signal x(t) is amplitude modulated with 0j n
e


,then the Fourier transform OF the  

result is  
0( )

1( ) ( )
jjy e x e
  

 . 

8.15 when a signal x(t) is amplitude modulated with cos( 0n ),then the Fourier transform OF the  

result is  

0 0( ) ( )

1

1 1
( ) ( ) ( ) ( ) ( )

2 2

j jjy e x e x e
     

  . 

1 2( ) ( )j jy e y e   only when 
0

  is either 0 or  . 

8.16  we know that c[n]= 5
sin( ) sin( )

2 2

n n 


 

( ) ( )
2 2

1 1
( ) ( ) ( ) ( ) ( )

2 2

j j

y j x e x e
j j

 
 


 

 
 

This is as shown in the figure s8.16. 

From the figure ,it is obvious that  
3 5

( ) 0, , 0
8 8

y j fo r and
 

         

8.17  the Fourier transforms ( ), ( ), ( )j j jx e G e andy e are  
 shown in figure s8.17. 

 

 

 

 

 

 

 

 

Figure s8.16 

 

 

 

 

 

 

                               

 

 

 

 

 

 

 

 

                               Figure s8.17 

 

 

 

 

 

8



 

0  
8

  
 

  

( )jz e 

 

1

2 j

 

1

2 j

 
0  

2

  

2

  
      3

8

  5

8

  

( )jz e   

      
0

 

1

 

( )jz e   

0    

2




 

2

  
    

( )ja e   

0  

1  

4



 

4



 



 

    

( )jQ e   

2

  

2

  0        

( )jz e   

2

  
4

  0  4




 
2




 

( )jx e   
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8.18.the Fourier transforms  ( )jx e 
 and ( )jy e 

  are as shown in figure s8.18.from this figures it is clear 

that we wish to accomplish single sideband modulation using the system .in particular, we are interest in 

retaining the upper sidebands of the signal. note that in figure 8.21 of section8.4,is shown a continues-time 

signal sideband system for retaining the lower sidebands. In this section, it was also mentioned (see 

eq.(8.21))that in order to retain the upper sidebands ,the frequency response  of the filter used in the system 

had to be charge to 
, 0

, 0( ) { j

jH j 

 

   

in this problem ,we extend this same idea to discrete-time system, we assume that the frequency response 

( )jH e 
  of the unknown systems is 

, 0

, 0( ) {j j

jH e  





   

let us now show that this does indeed give us the desired output .we redraw the system 

give in the problem with appropriate labels for the intermediate outputs. The fourier 

transforms of this intermediate outputs are shown in figure s8.18 

from figure s8.18,it is clear that the choice of ( )jH e    was appropriate. 

8.19 since 10 different signals have to be squeezed in within a bandwidth of  2 each signal is allowed to 

occupy a bandwidth of  2

10 5

 


 after sinusoidal modulation .therefore, before from the figure , it is obvious 

that    ( ) 0, 0 | |
2

y j for


    . 

sinusoidal modulation each signal can occupy only a bandwidth of 
10

   . the Fourier transform ( )j

iy e   of the 

signal obtained by upsampling [ ]ix n  by a factor of N can be nonzero (in the range | |   )only for  

| |
20


 

  .therefore ,n has to be at least 20. 

8.20  note that by choosing p[n]= [ 2 ]
k

n k




 
 , we would be eble to get 1̂[ ]v n and 2

ˆ [ 1]v n   at the output of 

the multipliers .furthermore ,note that 2

1 2
ˆ ( ) ( )j jv e v e   and 2

2 2
ˆ ( ) ( )j j jv e v e e      

this is illustrated in figure s8.20. therefore ,the output of the two branches will be as shown in figure s 8.20. 

from thus figures ,it is clears ,that the sum of the two  

outputs will be a FDM signal containing both 1[ ]v n  and  2[ ]v n . 

We are given that W<2ω+  -
M , lowpass filtering will result in the output  

1
( )cos( )

2
x t t . 

(b) We sketch the spectrum of the output for  =
M /2 in figure s8.23 

8.24 (a)Since s(t)= 
( )

k

kT 





. We have 

2

 0  2




 

( )jz e   

1  1  

  

  

2
  

2
  

1
2

 

  

{ [ ]cos }
2

n
FT z n

  

0    

1

2
 

   

{ [ ]* [ ]sin }
2

n
FT z n h n

  
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        S(j )= 2
( 2 ) ( )

c c
k k

k T k
T


     

 

 

   
 

      Let us denote x(t)s(t) by u(t).Then the Fourier transform of the signal w(t) is 

        1
( ) [ ( )* ( )]

2
W j X j S j  


  

               
( ( )

2

c

c
k

X j k

 





 
 

      This is as shown in FigureS8.24. Therefore , the Fourier transform Y ( )j of the  

output of the bandpass filter in 

          ( ) ( )
Y (j )= ( ( )) ( ( ))

2 2

c c

c c

A A
X j X j  

 

 
   

 

       Therefore. 
           ( )

y ( )= ( )cos( )c

c

A
t X t t






 

(b) If 0  ,then 

 

 

 

 

 

 

 

 

 
2

( ) ( 2 ) ( 2 )
2 2

j k
T

k k

S j k T k Te e
T T



      
 

 


 

 

    
 

Let us denote x(t)s(t) by  (t).Then the Fourier transform of the signal  (t)is 

1
( ) [ ( )* ( )]

2
W j X j S j  


  

       =

2

1
( ( 2 / ))

j k
T

X j k T
T

k

e



 

 






  

Therefore, the Fourier transform Y ( )j  of the output of the bandpass filter is 

2 / 2 /
( ) ( ( 2 / )) ( ( 2

2 2

j T j Tc c
A A

Y j X j T X je e
 

   
 

    
     / )T ) 

Therefore, 

     ( ) 2 2
y ( )= ( )cos( )

2

c
A

t X t t
T T

 



    

(c) Form the analysis in part (b).it is clear that the maximum allowable value for 
M is  /T. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 /T  2 /T  
2T

  
0 

w 

W(jw) 

Figure S8.24 



-   
  



w 
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Chapter 9 Answers 
9.1 （a）The given integral may be written as  

(5 )

0

t j te e dt     

If  <-5 ,then the function 
(5 )te  

 grows towards   with increasing t and the given integral does not 

converge .but  if >-5,then the integral does converge  

(b) The given integral may be written as 

      
0 (5 )t j te e d  

 t 

If  >-5 ,then the function 
(5 )te  

 grows towards  as t decreases towards - and the given integral does 

not converge .but  if  <-5,then the integral does converge  

(c) The given integral may be written as 
5 (5 )

5

t j te e d  

 t 

Clearly this integral has a finite value for all finite values of  . 

(d) The given integral may be written as 
(5 )t j te e d   

 t 

If  >-5 ,then the function 
(5 )te  

 grows towards  as t decreases towards - and the given integral 

does not converge If   <-5, ,then function 
(5 )te  

 grows towards   with increasing t and the given 

integral does not  converge If  =5, then the integral stilldoes not have a finite value. therefore, the integral 

does not converge for any value of  . 

(e) The given integral may be written as 

      
0 (5 )t j te e d  

 t+ 
(5 )

0

t j te e d    t 

The first integral converges for  <-5, the second internal converges if  >-5,therefore, the given internal 

converges when  <5. 

(f) The given integral may be written as 
0 (5 )t j te e d  

 t 

If   >5 ,then the function 
( 5 )te   

grows towards   as t decrease towards -  and the given 

integral does not converge .but if  <5,then the integral does converge. 

9.2  (a) 

X(s)= 5 ( 1)t dte u t e dt  

   

          = (5 )

0

s te dt    

        =
(5 )

5

se

s

 



 

As shown in Example 9.1 the ROC will be   Re s >-5. 

(b) By using eg.(9.3), we can easily show that g(t)=A
5te

u(-t- 0t ) has the Laplace transform  

G(s)= 
0( 5)

5

s t
Ae

s




 

The ROC is specified as  Re s <-5 . Therefore ,A=1 and 0t =-1 

9.3 Using an analysis similar to that used in Example 9.3 we known that given signal has a Laplace transform 

of the form  

X(s) 1 1

5s s 


 

 

  The corresponding ROC is  Re s >max(-5,Re{  }). Since we are given that the ROC is 

Re{s}>-3, we know that Re{  }=3 . there are no constraints on the imaginary part of  . 

9.4 We know form Table 9.2 that  

       
1 1 1( ) sin(2 ) ( ) ( ) ( )Ltx t e t u t X s X s     , Re{s}>-1 

We also know form Table 9.1 that  

        x(t)= 1( ) Lx t X(s)= 1( )X s  

The ROC of X(s) is such that if 0s  was in the ROC of 
1( )X s , then - 0s  will be in the ROC of X(s). Putting 
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the two above equations together ,we have  

x(t)= 
1x (-t) = sin(2 ) ( )te t u t 

LX(s)= 1( )X s
=-

2 2

2

( 1) 2s  

,     Re s <1 

the denominator of the form 
2s -2s+5. Therefore, the poles of X(s) are 1+2j and 1-2j. 

9.5 (a)  the given Laplace transform may be written as  

      ( )X s = 2 4

( 1)( 3)

s

s s



 

. 

Clearly ,X(s) has a zero at s=-2 .since in X(s) the order of the denominator polynomial exceeds the order of the 

numerator polynomial by 1 ,X(s) has a zero at  . Therefore ,X(s) has one zero in finite s-plane and one zero 

at infinity. 

(b) The given Laplance transform may be written as 

X(s)= 1

( 1)( 1)

s

s s



 
= 1

1s 
 

Clearly ,X(s) has no zero in the finite s-plane .Since in X(s) the of the denominator polynomial exceeds 

the order the numerator polynomial by 1,X(s) has a zero at  .therefore X(s) has no zero in the finite s-plane 

and one zero at infinity. 

(c) The given Laplace transform may be written as  
2

2

( 1)( 1)
( ) 1

( 1)

s s s
X s s

s s

  
  

 
 

   Clearly ，X（s）has a zero at s=1.since in X(s) the order of the numerator polynomial exceeds the order of 

the denominator polynomial by 1,X(s) has zeros at     .therefore , X(s) has one zero in the s-plane and no 

zero at infinity . 

9.6 (a)  No. From property 3 in Section 9.2 we know that for a finite-length signal .the ROC is the entire 

s-plane .therefore .there can be no poles in the finite s-plane for a finite length signal . Clearly in this problem 

this not the case. 

(b) Yes. Since the signal is absolutely integrable, The ROC must include, the j -axis . Furthermore ,X(s) has 

a pole at s=2 .therefore, one valid ROC for the signal would be Re{s}<2. From property 5 in section 9.2 we 

know that this would correspond to a left-sided signal  

(C)  No . Since the signal is absolutely integrable, The ROC must include , the j -axis . Furthermore  ,X(s) 

has a pole at s=2. therefore ,we can never have an ROC of the form Re{s}>  . From property 5 in section 9.2 

we knew that x(t) can not be a right-side signal  

(d) Yes . Since the signal is absolutely integrable, The ROC must include , the j -axis . Furthermore ,X(s) 

has a pole at s=2 .therefore, one valid ROC for the signal could be  <Re{s}<2 such that  <0 .From  

property 6 in section 9.2 ,we know that  this would correspond to a two side signal 

9.7   We may find different signal with the given Laplace transform by choosing different regions of 

convergence , the poles of the given Laplace transform are  

     
0 2s      

1 3s       
2

1 3

2 2
s j  

   
3

1 3

2 2
s j  

 

Based on the locations of the locations of these poles , we my choose form the following regions of 

convergence: 

(i) Re{s}>- 1

2
 

(ii)-2< Re{s}<- 1

2
 

(iii)-3<Re{s}<-2 

(iv)Re{s}<-3 

Therefore ,we may find four different signals the given Laplace transform. 

9.8 From Table 9.1,we know that  

          G(t)= 
2 ( ) ( ) ( 2)Lte x t G s X s   . 

The ROC of G(s) is the ROC of X(s) shifted to the right by 2 

We are also given that X(s) has exactly 2 poles at s=-1 and s=-3. since G(s)=X(s-2), G(s)also has exactly two 

poles ,located at s=-1+2=1 and s=-3+2=-1 since we are given G( j ) exists , we may infer that j -axis lies 

in the ROC of G(s). Given this fact and the locations of the poles ,we may conclude that g(t) is a two side 

sequence .Obviously x(t)= 
2te g(t) will also be two sided 

9.9 Using partial fraction expansion 
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         X(s)= 4 2

4 3s s


 
 

Taking the inverse Laplace transform, 

X(t)=4 4 3( ) 2 ( )t te u t e u t   

9.10 The pole-zero plots for each of the three Laplace transforms is as shown in Figure S9.10 

 

 

 

 

 

 

 

(a) form Section 9.4 we knew that the magnitude of the Fourier transform may be expressed as  

 

 

 

we se that the right-hand side of the above expression is maximum for  =0 and decreases as   becomes 

increasing more positive or more negative . Therefore 1( )H j  is approximately lowpass 

 (b) From Section 9.4 we know that the magnitude of the Fourier transform may be express as 
(length of vector from  to 0)

1 3 1 3
(length of vector from  to - +j  )(Length of vector from  to - -j )

2 2 2 2



 

 

    we see that the right-hand side of the above expression is zero for =0.It then increams with 

increasing | | until | | reach 1/2. Then it starts decreasing as | | increase even further.           

Therefore | 2H (j ) | is approximately bandpass. 

(c) From Section 9.4 we know that the magnitude of the Fourier transform may be express as 
2

1 3 1 3
 (length of vector from  to - +j  )(Length of vector from  to - -j ) 

2 2 2 2

 (Length of vector from  to 0)

 


 

We see that the right-hand side of the above expression is zero for  =0. It then increases with 

increasing | | until | | reaches 
2

1 . Then | | increases,| 3( )H j | decreases towards a value of 

1(because all the vector lengths became almost identical and the ratio become 1) .Therefore | 3( )H j | is 

approximately highpass. 

9.11  X(s) has poles at s= 1 3
- +j

2 2
 and 1 3

- -j
2 2

.X(s) has zeros at s= 1 3
+j

2 2
and  1 3

-j
2 2

 .From 

Section 9.4 we know that |X(j )| is 
1 3 1 3

(Length of vector from  to +j  ) (Length of vector from  to -j  )
2 2 2 2

1 3 1 3
 (length of vector from  to - +j  )(Length of vector from  to - -j ) 

2 2 2 2

 

 

 

The terms in the numerator and denominator of the right-band side of above expression cancel our 

giving us |X(j )|=1. 

9.12  (a) If X(s) has only one pole, then x(t) would be of the form A
ate

.Clearly such a signal violates 

condition 2. Therefore , this statement is inconsistent with the given information. 

(b) If X(s) has only two poles, then x(t) would be of the form A 0sin( )ate t
 .Clearly such a signal 

could be made to satisfy all three conditions(Example: 0 =80 , =19200). Therefore, this statement is 

consistent with the given information.                                                        

     (c) If X(s) has more than two poles (say 4 poles), then x(t) could be assumed to be of the 

form 0 0sin( ) sin( )at btAe t Be t   . Clearly such a signal could still be made to satisfy all three 

conditions. Therefore, this statement is consistent with the given information. 

9.13 We have       

                  1}Re{,
1

)( 


 s
s

sX
 . 

     Also,  
                 1}Re{1),()()(  ssXsXsG   

(Length of vector form   to -1)(Length of vector form   to 

-2) 

 

1 

 I m 

-1 -3 Re -4 Re 1 

Im Im 

Re 
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Therefore,               ].
1

1
[)(

2s

ss
sG







  

Comparing with the given equation for G(s), 

        ,1     
.

2

1


 

9.14. Since X(s) has 4 poles and no zero in the finite s-plane, we many assume that X(s) is of the form 
                      

.
))()()((

)(
dscsbsas

A
sX




  

    Since x(t) is real ,the poles of X(s) must occur in conjugate reciprocal pairs. Therefore, we may 

assume that b=
*a and d=

*c . This result in 
                       

.
))()()((

)(
** cscsasas

A
sX




 

     Since the signal x (t) is also even , the Laplace transform X(s) must also be even . This implies that 

the poles have to be symmetric about the j -axis. Therefore, we may assume that c=
*a . This results in  

                        
.

))()()((
)(

** aSasasas

A
sX




    

     We are given that the location of one of the poles is (1/2) 4
j

e . If we assume that this pole is a, we have   
                 

4 4 4 4

A
X(s)= .

1 1 1 1
(s- )(s- )(s+ )(s+ )

2 2 2 2

j j j j

e e e e
   

 

 

     This gives us 

2 2

( ) .
1 1

( )( )
4 42 2

A
X s

s s
s s



   

 

     Also ,we are give that ( ) (0) 4x t dt X



   

     Substituting in the above expression for X(s), we have A=1/4. Therefore,                 

2 2

1/ 4
( ) .

1 1
( )( )

4 42 2

X s
s s

s s



   

 

9.15. Taking the Laplace transform of both sides of the two differential equations, we have 

                     s X(s)= 1)(2  sY   and   s Y(s)=2X(s) .  

     Solving for X(s) and Y(s), we obtain 

                        
4

)(
2 


s

s
sX   and   Y(s)= 

2

2

s 4
.  

The region of convergence for both X(s) and Y(s) is Re{s}>0 because both are right-hand signals. 

9.16. Taking the Laplace transform of both sides of the given differential equations ,we obtain  
                    ).(])1()1()[( 223 sXssssY           

     therefore,  

                    .
)1()1(

1

)(

)(
)(

223  


ssssX

sY
sH  

     (a) Taking the Laplace transform of both sides of the given equation, we have 

                                G(s) = s H(s)+ H(s).   

        Substituting for H(s) from above, 

                     
.

1

)1()1(

)1(
)(

22223  







sssss

s
sG

  

        Therefore, G(s) has 2 poles. 

     (b) we know that 

                     H(s) = .
))(1(

1
22   sss

     

     Therefore, H(s) has poles at andj ),
2

3

2

1
(,1    ).

2

3

2

1
( j  If the system has to be stable, 

then the real part of the poles has to be less than zero. For this to be true, we require that ,02/   

i.e., 0 . 

9.17 The overall system show in Figure 9.17 may be treated as two feedback system of the form shown in 

figure 9.31 connected in parallel. By carrying out an analysis similar to that described in Section 9.8.1, we 

find the system function of the upper feedback system to be  

                   .
8

2

)/2(41

/2
)(1







ss

s
sH  
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    Similarly, the system function of the lower feedback system is 

                   .
2

1

)2/1(21

/1
)(2







s

s
sH   

    The system function of the overall system is now 

                        .
1610

123
)()()(

221





ss

s
sHsHsH    

    Since H(s)=Y(s)/X(s), we may write  

                          ]123)[(]1610)[( 2  ssXsssY .   

    Taking the inverse Laplace transform, we obtain 

                     
dt

tdx
txty

dt

tdy

dt

tyd )(
3)(12)(16

)(
10

)(2

  

9.18. ( a)  From problem 3.20, we know that differential equation relating the input and output of the 

RLC circuit is 

    
2 ( ) ( )

( ) ( ).
d y t dy t

y t x t
dt dt

    

     Taking the Laplace transform of this (while nothing that the system is causal and stable), we obtain 

                      2( )[ 1] ( ).Y s s s X s      

     Therefore , 

                    
2

( ) 1
( ) ,

( ) 1

Y s
H s

X s s s
 

 
     1

{ } .
2

e s  
   

     (b) We note that H(s) has two poles at 1 3

2 2
s j  

and 1 3

2 2
s j  

. It has no zeros in the finite s-plane. 

From Section 9.4 we know that the magnitude of the Fourier transform may be expressed as  
               

1

1 3 1 3
(Length of vector from  to - +j  )(Length of vector from  to - -j )

2 2 2 2
 

  

     We see that the right hand side of the above expression Increases with increasing | | until | | 

reaches 1

2

. Then it starts decreasing as | | increasing even further. It finally reaches 0 for | |= . 

Therefore 
2| ( ) |H j  is approximately lowpass. 

(c) By repeating the analysis carried out in Problem 3.20 and part (a) of this problem with R = 310  , 

we can show that 

                      
2

( ) 1
( ) ,

( ) 1

Y s
H s

X s s s
 

 

        { } 0.0005.e s       

        (d) We have                     
1

3 3
(Vect.Len.from  to -0.0005+j )(Vect.Len.from  to -0.0005-j )

2 2
 

   

    We see that when | | is in he vicinity 0.0005, the right-hand side of the above equation takes on 

extremely large value. On either side of this value of | | the value of |H (j )| rolls off rapidly. Therefore, 

H(s) may be considered to be approximately bandpass.  

9.19. (a) The unilateral Laplace transform is 

                               X(s) = 2

0
( 1)t ste u t e dt




   

                                   = 2

0

t ste e dt



 

  

                                   =
2

1

s

    { } 2.e s    

 (b) The unilateral Laplace transform is 

               2( 3)

0
( ) [ ( 1) ( ) ( 1)]t stX s t t e u t e dt 




        

2( 3)

0
[ ( ) ]t stt e e dt




     

6

1
2

e

s



 


      { } 2.e s    

(c) The unilateral Laplace transform is 

                2 4

0
( ) [ ( ) ( )]t t stX s e u t e u t e dt




     

                       2 4

0
[ ]t t ste e e dt




        
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                       1 1

2 4s s
 

 

      { } 2.e s      

9.20. In Problem 3.29, we know that the input of the RL circuit are related by  

                          ).()(
)(

txty
dt

tdy
  

         Applying the unilateral Laplace transform to this equation, we have 

                          ).()()0()( sxsyyssy     

         (a) For the zero-state response, set (0 ) 0y   .Also we have  

                         usx )( L{ )(2 tue t
}=

2

1

s
 .   

           Therefore, 

                           y(s)(s+1)= .
2

1

s

  

           Computing the partial fraction expansion of the right-hand side of the above equation and 

then taking its inverse unilateral Laplace transform, we have  

                         ).()()( 2 tuetuety tt     

     (b) For the zero-state response, assume that x(t) = 0.Since we are given that (0 ) 1y   ,      

.
1

1
)(0)(1)(




s
sysyssy     

            Taking the inverse unilateral Laplace transform, we have  
                                      ( ) ( ).ty t e u t   

 

 

 

 

 

 

 

 

                          Figure  S9.21 

(c) The total response is the sum of the zero-state and zero-input response. This is 

                            2( ) 2 ( ) ( ).t ty t e u t e u t    

9.21. The pole zero plots for all the subparts are shown in figure S9.21. 

      (a) The Laplace transform of x(t) is 

                     X(s)= 2 3

0
( )t t ste e e dt


    

                        = ( 2) ( 3)

0 0[ /( 2)] | [ /( 3)] |s t s te s e s           

                        = 
2

1 1 2 5

2 3 5 6

s

s s s s


 

   
 

      (b) Using an approach similar to that show in part (a), we have 

                         4 1
( ) ,

4

Lte u t
s

 


  { } 4 .e s       

         Also,  

                 5 5 1
( ) ,

5 5

Lt j te e u t
s j

 
     

{ } 5e s   .     

and 

              5 5 1
, 5

5 5

LTt j te e u t e s
s j

     
 

.  

From this we obtain  

            
     

 
5 5 5 5 5

2

1 5
sin 5

2 5 25

LTt t j t t j te t u t e e e e u t
j s

       
 

 , 

where   5e s    .Therefore, 

                 
2

4 5

3 2

15 70
sin 5 , 5

14 90 100

LTt t s s
e u t e t u t e s

s s s

   
    

  

. 

(c)The Laplace transform of  x t  is  

-2 -3 -2.5 

Im 

R 

a 

-2 R 

Im e 
Im 

R 

f 

Im 

R 

g 
Im 

R 

h 

-2 2 

4 

-4 

Im 

R 

d 

R 

b 
Im 

c 

R 

Im 
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               
0

2 3t t stX s e e e dt


   

                        2 30 0/ 2 | / 3 |
s t s t

e s e s
  

 
        
   

 

                 
2

1 1 2 5

2 3 5 6

s

s s s s


  

   

. 

     The region of convergence (ROC) is   2e s  . 

(d)Using an approach along the lines of part (a),we obtain 

                2 1
, 2

2

LTte u t e s
s

    


.              (S9.21-1) 

  Using an approach along the lines of part (c) ,we obtain  

                2 1
, 2

2

LTte u t e s
s

   


.               (S9.21-2) 

  From these we obtain 

                2 2 2

2

2

4

t LTt t s
e e u t e u t

s

    


,  2 2e s   .  

Using the differentiation in the s-domain property , we obtain  

           

 
 

2
2

22 2

2 2 8
, 2 2

4 4

t LT d s s
te e s

ds s s

  
        

. 

(e)Using the differentiation in the s-domain property on eq.(S9.21-1),we get  

                
 

 2

2

1 1
, 2

2 2

LTt d
te u t e s

ds s s

  
       

. 

  Using the differentiation in the s-domain property on eq (S9.21-2),we get  

           
 

 2

2

1 1
, 2

2 2

LTt d
te u t e s

ds s s

 
         

. 

  Therefore, 

          
   

 2 2 2

2 2

4
, 2 2

2 2

t LTt t s
t e te u t te u t e s

s s

  
      

 

. 

(f)From the previous part ,we have 

            
 

 2 2

2

1
, 2

2

LTt tt e u t te u t e s
s

      


. 

(g)Note that the given signal may be written as      1x t u t u t    .Note that  

                    
1

, 0LTu t e s
s

   . 

  Using the time shifting property ,we get  

                    1 , 0
s

LT e
u t e s

s



    . 

  Therefore ,  1x t  

                   
1

1 ,
s

LT e
u t u t

s


    All s . 

  Note that in this case ,since the signal is finite duration ,the ROC is the entire s-plane. 

(h)Consider the signal      1 1x t t u t u t    
.Note that the signal  x t  may be  

expressed as      1 1 2x t x t x t     . We have from the previous part 

                 
1

1
s

LT e
u t u t

s


   ,    All s . 

  Using the differentiation in s-domain property ,we have  

                 1 2

1 1
1

s s s
LT d e se e

x t t u t u t
ds s s

     
        

 

,  All s . 

  Using the time-scaling property ,we obtain  

             1 2

1s s
LT se e

x t
s

  
  ,   All s . 

  Then ,using the shift property ,we have  
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              2

1 2

1
2

s s
LT s se e

x t e
s

   
    ,All s . 

  Therefore , 

              2

1 1 2 2

1 1
2

s s s s
LT sse e se e

x t x t x t e
s s

 
    

      , All s. 

(i) The Laplace transform of      x t t u t   is    1 1/ , 0X s s e s    . 

(j) Note that        3 3t u t t u t    .Therefore ,the Laplace transform is the same as the result of the 

previous part. 

9.22 (a)From Table 9.2,we have 

                      
1

sin 3
3

x t t u t . 

(b)From Table 9.2 we know that  

                   2
cos 3 , 0

9

LT s
t u t e s

s
  


. 

  Using the time scaling property ,we obtain  

                   2
cos 3 , 0

9

LT s
t u t e s

s
   


 

  Therefore ,the inverse Laplace transform of  X s  is 

                  cos 3x t t u t   .  

(c)From Table 9.2 we know that  

             
   

 
 2

1
cos 3 , 1

1 9

LTt s
e t u t e s

s


  

 

.  

  Using the time scaling property ,we obtain  

             
   

 
 2

1
cos 3 , 1

1 9

LTt s
e t u t e s

s

 
    

 

.  

  Therefore ,the inverse Laplace transform of  X s  is    

                  cos 3tx t e t u t   . 

(d)Using partial fraction expansion on  X s  ,we obtain  

             
 

2 1

4 3
X s

s s
 

 

 . 

  From the given ROC ,we know that  x t  must be a two-sided signal .Therefore 

                  4 32 t tx t e u t e u t    . 

(e)Using partial fraction expansion on  X s  ,we obtain  

             
 

2 1

3 2
X s

s s
 

 

. 

  From the given ROC ,we know that  x t   must be a two-sided signal ,Therefore, 

        3 32 t tx t e u t e u t    . 

(f)We may rewrite  X s  as  

                2

3
1

1

s
X s

s s
 

 

 

                    

   
22

3
1

1/ 2 3 / 2

s

s

 

 

 

                    

       
2 22 2

1/ 2 3/ 2
1 3

1/ 2 3 / 2 1/ 2 3 / 2

s

s s


  

   

 

  Using Table 9.2 ,we obtain  

           / 2 / 23 cos 3 / 2 3 sin 3 / 2t tx t t e t u t e t u t     . 

(g)We may rewrite  X s  as  

           
 

 
2

3
1

1

s
X s

s
 



. 

  From Table 9.2,we know that  
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              2

1
, 0LTtu t e s

s
   .  

  Using the shifting property ,we obtain  

            
 

 2

1
, 1

1

LTte tu t e s
s

    


. 

  Using the differentiation property , 

                
 

 2
, 1

1

LTt t td s
e tu t e u t te u t e s

dt s

          


. 

  Therefore, 

                  3 3t tx t t e u t te u t     . 

9.23.The four pole-zero plots shown may have the following possible ROCs: 

·Plot (a):   2e s    or  2 2e s    or   2e s  . 

·Plot (b):   2e s    or   2e s   . 

·Plot (c):   2e s   or   2e s  . 

·Plot (d): Entire s-plane. 

Also, suppose that the signal  x t  has a Laplace transform  X s with ROC R . 

(1).We know from Table 9.1 that  

             3 3LTte x t X s   . 

   The ROC 1R of this new Laplace transform is R  shifted by 3 to the left .If   3tx t e
 is absolutely 

integrable, then 1R  must include the jw -axis.  

   ·For plot (a), this is possible only if R was   2e s   .  

   ·For plot (b), this is possible only if R was   2e s   . 

   ·For plot (c), this is possible only if R was   2e s   .  

   ·For plot (d), R  is the entire s-plane. 

(2)We know from Table 9.2 that  

               
1

, 1
1

LTte u t e s
s

    


. 

  Also ,from Table 9.1 we obtain 

             
 

 2, 1
1

LTt
X s

x t e u t R R e s
s

          
 

  If    te u t x t  is absolutely integrable, then 2R  must include the jw -axis. 

   ·For plot (a), this is possible only if R was  2 2e s   .  

   ·For plot (b), this is possible only if R was   2e s   . 

   ·For plot (c), this is possible only if R was   2e s   .  

   ·For plot (d), R  is the entire s-plane. 

(3)If   0x t   for 1t   ,then the signal is a left-sided signal or a finite-duration signal .  

  ·For plot (a), this is possible only if R was   2e s   .  

   ·For plot (b), this is possible only if R was   2e s   . 

   ·For plot (c), this is possible only if R was   2e s   .  

   ·For plot (d), R  is the entire s-plane. 

(4)If   0x t  for 1t   ,then the signal is a right-sided signal or a finite-duration signal  

  ·For plot (a), this is possible only if R was   2e s  .  

   ·For plot (b), this is possible only if R was   2e s    . 
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   ·For plot (c), this is possible only if R was   2e s  .  

   ·For plot (d), R  is the entire s-plane. 

9.24.(a)The pole-zero diagram with the appropriate markings is shown Figure S9.24. 

     (b)By inspecting the pole-zero diagram of part (a), it is clear that the pole-zero diagram shown in Figure 

S9.24 will also result in the same  X jw  .This would correspond to the Laplace transform 

                1

1

2
X s s  ,  

1

2
e s  . 

(c)≦  X jw  ≦  1X jw . 

(d)  2X s with the pole-zero diagram shown below in Figure S9.24 would have the property that ≦

 2X jw ≦  X jw .Here ,  2

1

1/ 2
X s

s





. 

(e)    2 1/X jw X jw . 

(f)From the result of part (b),it is clear that  1X s  may be obtained by reflecting the poles and zeros 

in the right-half of the s-plane to the left-half of the s-plane .Therefore, 

        1

1/ 2

2

s
X s

s






. 

  From part (d),it is clear that  2X s  may be obtained by reflecting the poles (zeros) in the 

right-half of the s-plane to the left-half and simultaneously changing them to zeros (poles).Therefore, 

           
 

  

2

2

1

1/ 2 2

s
X s

s s




 

 

9.25.The plots are as shown in Figure S9.25. 

9.26.From Table 9.2 we have  

                      2

1 1

1
, 2

2

LTtx t e u t X s e s
s

     


  

and 

                  3

1 1

1
, 3

3

LTtx t e u t X s e s
s

     


. 

Using the time-shifting time-scaling properties from Table 9.1,we obtain 

                
2

2

1 12 , 2
2

s
LT s e

x t e X s e s
s


     


  

and 

                
3

3

2 23 , 3
3

s
LT s e

x t e X s e s
s


       


. 

       Therefore, using the convolution property we obtain  

       
2 3

1 22 3
2 3

s s
LT e e

y t x t x t Y s
s s

    
          

    

. 

9.27.From clues 1 and 2,we know that  X s  is of the form 

           
 

  
A

X s
s a s b


 

. 

Furthermore , we are given that one of the poles of   X s  is 1 j  .Since  x t is real, the  

poles of  X s  must occur in conjugate reciprocal pairs .Therefore, 1a j  and 1b j   

and 
 

  1 1

A
H s

s j s j


   

. 

From clue 5,we know that  0 8X  .Therefore, we may deduce that 16A   and 

           2

16

2 2
H s

s s


 

 .  

Let R denote the ROC of  X s .From the pole locations we know that there are two  

possible choices of R . R may either be   1e s   or   1e s   .We will now use  

clue 4 to pick one .Note that  
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                2 2LTty t e x t Y s X s    . 

The ROC of  Y s is R  shifted by 2 to the right .Since it is given that  y t  is not absolutely 

integrable ,the ROC of  Y s  should not include the jw axis .This is possible only of 

R  is   1e s   . 

9.28.(a) The possible ROCs are 

  (i)   2e s   . 

  (ii)  2 1e s    . 

  (iii)  1 1e s   . 

  ( iv)   1e s  . 

(b)(i)Unstable and anticausal. 

  (ii) Unstable and non causal. 

 （iii）Stable and non causal. 

  (iv) Unstable and causal. 

 9.29.(a)Using Table 9.2,we obtain  

                
1

, 1
1

X s e s
s

   


 

   and   

            
1

, 2.
2

H s e s
s

   


 

(b) Since      y t x t h t  ,we may use the convolution property to obtain 

        
     

  
1

1 2
Y s X s H s

s s
 

 

. 

  The  ROC of  Y s  is   1e s   . 

(c) Performing partial fraction expansion on  Y s ,we obtain 

        .   
1 1

1 2
Y s

s s
 

 

. 

  Taking the inverse Laplace transform, we get 

     2t ty t e u t e u t   . 

     (d)Explicit convolution of  x t  and  h t  gives us  

     y t h x t d  



    

   2

0

t
e e u t d

  
     

0

t
te e d      for 0t   

 2 .t te e u t    
 

9.30.For the input    x t u t , the Laplace transform is 

                 
1

, 0.X s e s
s

    

   The corresponding output    1 t ty t e te u t     
 has the Laplace transform  

       
 

   
 2 2

1 1 1 1
, 0

1 1 1
Y s e s

s s s s s
     

  

. 

Therefore, 
          

 
 

   
 2

1
, 0.

1

Y s
H s e s

X s s
   



 

     Now ,the output    3

1 2 3 t ty t e e u t     
 has the Laplace transform  

        
 

  
 1

2 3 1 6
, 0.

1 3 1 3
Y s e s

s s s s s s
     

   

 

Therefore , the Laplace transform of the corresponding input will be 

 
 

 

 

 
 1

1

6 1
, 0.

3

Y s s
X s e s

H s s s


   


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Taking the inverse Laplace transform of the partial fraction expansion of  1 ,X s we obtain 

     3

1 2 4 .tx t u t e u t   

9.31.(a).Taking the Laplace transform of both sides of the given differential equation and simplifying, we 

obtain 

                    
 

 

  2

1

2

Y s
H s

X s s s
 

 

. 

       The pole-zero plot for  H s  is as shown in figure S9.31. 

 

 

 

 

b).The partial fraction expansion of  H s   is  

                
 

1/ 3 1/ 3

2 1
H s

s s
 

 

. 

   (i).If the system is stable ,the ROC for  H s  has to be  1 2e s    . Therefore 

             21 1

3 3

t th t e u t e u t    . 

   (ii).If the system is causal, the ROC for  H s  has to be   2e s   .Therefore  

     21 1

3 3

t th t e u t e u t  . 

   (iii)If the system is neither stable nor causal ,the ROC for  H s has to be   1e s   . 

      Therefore , 

                21 1

3 3

t th t e u t e u t      

9.32. If   2tx t e produces     21/ 6 ty t e ,then    2 1/ 6H  . Also, by taking the Laplace transform of both sides 

of the given differential equation we get 

                           
 

 

  

4

4 2

s b s
H s

s s s

 


 

. 

     Since  2 1/ 6H   ,we may deduce that 1b   .Therefore  

 
 

    

2 2 2

4 2 4

s
H s

s s s s s


 

  

. 

9.33.Since      t t tx t e e u t e u t
     , 

           
 

  
 

1 1 2
, 1 1

1 1 1 1
X s e s

s s s s


     

   

. 

We are also given that  

       
  2

1

2 2

s
H s

s s




 

. 

Since the poles of  H s are at 1 j  , and since  h t  is causal ,we may conclude that the ROC of 

 H s  is   1e s   .Now 

      
     

  2

2

2 2 1
Y s H s X s

s s s


 

  

. 

The ROC of  Y s will be the intersection of the ROCs of  X s and  H s .This is  1 1e s   . 

We may obtain the following partial fraction expansion for  Y s : 

             
  2

2 / 5 2 / 5 6 / 5

1 2 2

s
Y s

s s s


  

  

. 

We may rewrite this as 

           
 

   
2 2

2 / 5 2 1 4 1

1 5 51 1 1 1

s
Y s

s s s

   
      

          

.  

Nothing that the ROC of  Y s is  1 1e s   and using Table9.2,we obtain  

0 -

1 

2 R

e 

Im 

Figure S9.31 
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                   
2 2 4

cos sin
5 5 5

t t ty t e u t e tu t e tu t    
 

9.34.We know that  
                       1 1

1
, 0LTx t u t X s e s

s
    

 

    Therefore,  1X s
has a pole at 0s  .Now ,the Laplace transform of the output  1y t of the system with 

 1x t  as the input is  

                   1 1Y s H s X s  

    Since in clue 2,  1Y s is given to be absolutely integrable ,  H s  must have a zero at  0s  which 

cancels out the pole of  1X s at 0s  . 

We also know that  

                      2 2 2

1
, 0LTx t tu t X s e s

s
      

    Therefore ,  2x s has two poles at 0s  .Now ,the Laplace transform of the output  2y t  of the system 

with  2x t  as the input is 

                     2 2Y s H s X s  

     Since in clue 3,  2Y s is given to be not absolutely integrable ,  H s does not have two zeros at 

0s  .Therefore ,we conclude that  H s  has exactly one zero at 0s  . 

          From clue 4 we know that the signal 
                         

 
   

 
2

2
2 2

d h t dh t
p t h t

dt dt
  

 

     is finite duration .Taking the Laplace transform of both sides of the above equation ,we get  

                 2 2 2P s s H s sH s H s   . 

      Therefore,  

         
 

 
2 2 2

P s
H s

s s


 

. 

     Since  p t is of finite duration, we know that  P s  will have no poles in the finite s-plane . 

Therefore,  H s  is of the form 

               
 

1

2 2 2

N

i

i

A s z

H s
s s






 


,      

     where iz , 1,2,....,i N represent the zeros of  P s .Here , A  is some constant. 

From clue 5 we know that the denominator polynomial of  H s  has to have a degree which is 

exactly one greater than the degree of the numerator polynomial .Therefore, 

              
 

 1

2 2 2

A s s
H s

s s




 

. 

Since we already know that  H s  has a zero at 0s   ,we may rewrite this as   2 2 2

As
H s

s s


 
 

  From clue 1 we know that  1H is 0.2 .From this ,we may easily show that 1A   .Therefore, 

           
  2 2 2

s
H s

s s


 

. 

Since the poles of  H s  are at 1 j   and since  h t  is causal and stable ,the ROC of  H s  is 

  1e s   . 

9.35.(a) We may redraw the given block diagram as shown in Figure S9.35. 

         From the figure ,it is clear that  

 
 1

F s
Y s

s


. 

Therefore,    1 /f t dy t dt . Similarly,     /e t df t dt .Therefore,    2 2

1 /e t d y t dt . 

From the block diagram it is clear that  

                
   

 
2

1 1

1 12
6 6

d y t dy t
y t e t f t y t y t

dt dt
     

. 

Therefore 
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                2

1 1 16Y s s Y s sY s Y s   .    

  Now ,let us determine the relationship between  1y t and  x t .This may be done by concentrating on the lower 

half of the above figure .We redraw this in Figure S9.35. 

  From Example 9.30,it is clear that  1y t  and  x t  must be related by the following differential equation : 

                
   

2

1 1

12
2

d y t dy t
y t x t

dt dt
  

.  

Therefore, 

        
 

 
1 2 2 1

X s
Y s

s s


 

. 

Using this in conjunction with eq (S9.35-1), we get  

        
   

2

2

6

2 1

s s
Y s X s

s s

 


 

. 

Taking the inverse Laplace transform ,we obtain 

   
 

   
 

2 2

2 2
2 6

d y t dy t d x t dx t
y t x t

dt dt dt dt
    

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

（b）The two poles of the system are at -1.Since the system is causal; the ROC must be to 

the right of  s= - 1.Therefore, the ROC must include the j -axis. Hence, the system 

 is stable. 

9.36. (a) We know that 
1( )Y s  and ( )Y s are related by 

                         ( )Y s = 2(2 4 6)s s 
1( )Y s . 

taking the inverse Laplace transform, we get 

                         
2

1 1
12

( ) ( )
( ) 2 4 6 ( ).

d y t dy t
y t y t

dt dt
    

(b) Since 1( )Y s = 1( )
( ) / , ( ) .

dy t
F s s f t

dt


 

x(t) 1/s 

+
 

2 

4 

1/s 

-2 

-6 

-3 

+
 

+
 

y(t) 

（e） 

x(t) 

+
 

1/s 

-2 

y(t) 

+
 

-1 

1 

+
 

+
 

-2 1/s 

2 
(f) 

Figure S9.36 
system ① 
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1/s 
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1 

-5 

-6 

+ 

+ 

y(t) 
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1/s 

+ -2 

1/s 

-5 

6 

1/s 

1/s 

-10 

1 

+ 

+ + 

(b) 
(c) 

+ 

+ 

1/s 

-2 

1/s 

-4 

1/s 

y(t) x(t) 

Figure S9.37 
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2 
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-8 1/s 
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+ y(t) 

Figure S9.36 
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(c) Since ( )F s = 2

1

2

( )( )
( ) / , ( ) .

d y tdf t
E s s e t

dt dt
 

 

(d) From part (a), 
1( ) 2 ( ) 4 ( ) 6 ( ).y t e t f t y t    

(e) The extended block diagram is as shown in Figure S9.36. 

(f) The block diagram is as shown in Figure S9.36. 

(g) The block diagram is as shown in Figure S9.36. 

      The three subsystems may be connected in parallel as show in the figure above to 

   obtain the overall system. 

9.37.  The block diagrams are shown in Figure S9.37. 

9.38 (a) We may rewrite ( )H s  as 

              
3 31 1

2 2 2 2

1 1 1 1
( ) [ ][ ][ ][ ]

1 1 j j
H s

s s s s


     

. 

( )H s  clearly may be treated as the cascade combination of four first order subsystems. 

consider one of there subsystems with the system function 

                1( )H s =
31

2 2

1
[ ]

js  

  

the block diagram for this is as show in Figure S9.38.Clearly, it contains multiplications 

with coefficients that are not real. 

(b) We may write ( )H s  as  

                 ( )H s =
1 22 2

1 1
[ ][ ] ( ) ( ).

2 1 1
H s H s

s s s s


   
 

the block diagram for ( )H s may be constructed as a cascade of the block diagrams of 

1( )H s  and 
2 ( )H s  as show in Figure S9.38. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (c) We may rewrite )(sH  as  

                  )(sH ).()(]
1

1
[

3

1
]

12

3
[

3

1
4322

sHsH
ss

s

ss

s










  

The block diagram for )(sH  may be constructed as a parallel combination of the block 

Diagrams of )(3 sH  and ).(4 sH as show in Figure S9.38. 

9.39. (a) For )(1 tx , the unilateral and bilateral Laplace transforms are identical 

.2}{,
2

1
)()( 11 


 se

s
sxsX   

(b) Here, using Table9.2 and time shifting property we get  

             3}{,
2

)(2 


 se
s

e
sX

s

. 

  The unilateral Laplace transform is 

+
 1/s 

2

3

2
1 j

 

y(t) 

1/s 

x(t) 

+
 y(t) 

+
 

+
 

+
 

1/s 1/s 

-1 

1/s 

-2 

x(t) 1/s 

-1 

+
 

y(t) x(t) 

+
 +
 

+
 

+
 

+
 

+
 

+
 

+
 

1/s 

-2 

-1 3 

1 

0 

1/s 

1/s 

1/s 

1/s 

0 

1 

1 

-1 

-1 

Figure S9.38 
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                3}{,
3

1
)( 3

2 


  se
s

esX . 

(c) We have  

          G(s)= 
]

3

1

2

1
[

)3)(2(
)()( 21










ss
e

ss

e
sXsX s

s  

  Taking the inverse unilateral transform, we obtain 

           ).()()( )1(332 tuetuetr tt    

clearly, )(tr )(tg  for t>
0 . 

9.40. Taking the inverse unilateral transform of both sides of the given differential equation, we 

get 

      

)()(6)0(11)(11)0(6

)0(6)(6)0()0()0()( 223

sxsyyssyy

sysysyysyssys








 

                                                         (S9.40-1) 

(a) For the zero state response, assume that all the initial conditions are zero. Furthermore, 

Form the given x(t) we may determine 

,
4

1
)(




s
sx

      4}{  se . 

        Form eq.(S9.40-1), we get 

                 
4

1
]6116)[( 23




s
ssssy . 

Therefore, 
             

)6116)(4(

1
)(

23 


ssss
sy

      

taking the inverse unilateral Laplace transform of the partial fraction expansion of the 

above equation, we get 

           )(
2

1
)(

2

1
)(

6

1
)(

6

1
)( 324 tuetuetuetuety tttt    

(b) For the zero-input response, we assume that X(s)=0 .Assuming that the initial conditions are as given, we 

obtain from (s9.40-1) 

1

1

6116

65
)(

23

2









ssss

ss
sy

 

Taking the inverse unilateral Laplace transform of the above equation, we get  
                         )()( tuety t  

(c) the total response is the sum of the zero-state and aero-input responses. 
               

)(
2

1
)(

2

1
)(

6

1
)(

6

7
)( 324 tuetuetuetuety tttt  

 

9.41. let us first find the Laplace transform of the signal )()( txty    .We have 

dtetxsY st






 )()(  

                             

)(

)(

sX

dtetx st



 



 

(a) Since )()( txtx  for an even signal, we can conclude that LT{x(t)}=LT{x(-t)}    therefore, 

X(s)=X(-s). 

(b) Since )()( txtx   for an odd signal , we can conclude that   LT{x(-t)}LT{x(t)}   there, 

(b) First of all note that for a signal to be even, it must be either two-sided or finite duration.  

therefore, if  has poles, the ROC must be a strip in the s-plane. 

(c)  Form plot (a),we get  
                                

.
)1)(1(

)(



ss

As
sx

 

Therefore, 

).(
)1)(1(

)( sx
ss

As
sx 






 

Therefore, x(t) is not even (in fact it is odd). 

For plot (b), we note that the ROC cannot be chosen to correspond to a two-sided function x(t).therefore, 

this signal is not even. 

Form plot (c), we get 

1

)1(

)1)(1(

))((
)(

2

2











s

sA

ss

jsjsA
sx

 

Therefore, 
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)(
1

)1(
)(

2

2

sx
s

sA
sx 






 

Therefore, x(t) is even provided the ROC is chosen to be –1< 

For plot (d), we note that the ROC cannot be chosen to correspond to a two-sided function x(t). Therefore, this 

signal is not even. 

9.42. (a) form table 9.2 we know that Laplace transform of )(2 tut is
2/1 s with the ROC  

0}{  se .therefore, the given statement is false. 

(b) We know that the Laplace transform of a signal x(t) is the same as the Fourier transform of the signal 
tetx )(   .the ROC is given by the range of    for which this Fourier transform exists. 

Now, if x(t)= )(
2

tue t
, the we note that as t ,the signal x(t) becomes unbounded. Therefore, for the 

Fourier transform of of )(txe t
to exist, we need to find a range of  which ensure that  )(txe t

  is 

bounded as t .  Clearly , this is not possible.  Therefore , the given statement is true. 

(c) this statement is true. Consider the signal 
tj

etx 0)(


 . Then 












sj

e
dteesX

sjt
sttj

0

)( 0

0)(



 |




 

this integral dose not converge for any vale of s. 

(d) this statement is false. Consider the signal )()( 0 tuetx
tj

 . Then 

|
0

0

)(

0

0

0)(








  sj

e
dteesX

sjt
sttj




  

this integral converges for any value of s>0. 

(e) this statement is false. Consider the signal ttx )( .Then 

 




 
0

0

)( dttedttesX stst  

both integrals on the right-hand side converge for any value of s>0. 

9.43. we are given that h(t) is causal and stable .therefore ,all poles are in the left half of the s-plane . 

(a) note that  
           

)()(
)(

)( ssHsG
dt

tdh
tg L 

 

now, G(s) has the same poles as H(s) and hence the ROC for G(s) remains the same therefore,  

g(t) is also guaranteed to be causal and stable. 

(b) note that  

s

sH
sRdhtr L

t )(
)()()(   


 

note that R(s) dose not have a pole at s=0 only if H(s) has a zero at s=0. therefore, we cannot guarantee that r(t) 

is always causal and unstable.   

9.44.  (a) Note that 
                       .,)( sAllenTt snTc   

Therefore, 

 
 sT

snT

n

nT

e
ees











  1

0 1

1   . 

 

 

 

 

In order to determine the ROC, let us first find the poles of X(s) . Clearly , the poles occur when 

This implies that the poles satisfy the following equation : 
 

.,2,1,0,21 


kee jksT k 
 

Taking the logarithm of both side of the above equation and simplifying , we get  

.,2,1,0,1
2  ks

T

jk

k

  

Therefore , the poles all lie on a vertical line (parallel to the jw-axis) passing though 

s = -1 . Since the signal is right-sided , the ROC is Re{s}>-1. 

(c) The pole-zero poles is as shown in Figure S9.44 . 

     (c) The magnitude of the Fourier transform )( jw is given by the product of the reciprocal of the 

0 

Figure S9.44 

2 /   
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lengths of the vectors from the poles to the point jw .The phase of )( jw is given by the negative 

of the sum of the angles of these vectors . Clearly from the pole-zero plot above it is clear that both 

the magnitude and phase have to vary periodically with a period of 2π/Т. 

9.45 . (a) Taking the Laplace transform of the signal x(t) , we get 

                                  .121
3/1

2
3/2




ss
s

ss
s  

        The ROC  1 2e s    Also , note that since x(t) is a left-sided signal , the ROC  

for X(s) is   2e s   

        Now , 

   

    2 1

Y s s

X s s s
H s

 
   

        We know that the ROC of Y(s) has to be the intersection of the ROCs of X(s) and 

        H(s) . This leads us to conclude that the ROC of H(s) is   1e s   .  

(b) The partial fraction expansion of H(s) is 

  2 1
2 1S S

H S
 

   

Therefore, 
2( ) 2 ( ) ( ).t th t e u t e u t    

(c) 
3te  is an Eigen function of the LTI system . Therefore ,  

 3 33
20

( ) (3) t ty t H e e    

9.46 . Since y(t) is real , the third input must be of the form 0s t
e  Since x(t) is of the form  

   0 0s t s t
t e e


   and the output is   4 4184

34 34
( ) 6 cos(3 ) sin(3 )t t ty t e u t e t e t    , we may conclude that 

  184
34 34

4 3H j j    

Let us try    ( ) 6 th t t e u t    then 

  5
1

s
s

H s 


  

We may easily show that   184
34 34

4 3H j j    Therefore , H(s) as given above is consistent with the 

given information . 

9.47 . (a) Taking the Laplace transform of y(t) , we obtain  

   1
2s

Y s


            2e s    
Therefore , 

   

    
1

1 2

Y s s

H s s s
X s 

 
   

 

The pole-zero diagram for X(s) is as shown in Figure S9.47 . Now , the ROC of H(s) is   1e s   . 

We know that ROC of Y(s) is at lest the intersection of the ROCs of X(s) and H(s) . Note that the ROC 

can be larger if some poles are canceled out by zeros at the same location . In this case , we can choose 

the ROC of X(s) to be either -2<   1e s   or   1e s   . In both cases , we get the same ROC of 

Y(s) because the poles at s = -1 and s =1 in H(s) and X(s) , respective are canceled out by zeros. The 

partial fraction expansion of X(s) is    

     
2/3 1/3

1 2s s
X s

 
       

Taking the ROC of X(s) to be  2 1e s   , we get  

22 1
3 3

( ) ( ) ( )t tx t e u t e u t     . 

 

 

 

 

Taking the ROC of X(s) to be   1e s  , we get  

22 1
3 3

( ) ( ) ( )t tx t e u t e u t    

(b) Since it is given that x(t) is absolutely integrable , we can conclude that the ROC of X(s) must 

include the jw-axis. Therefore, the first choice of x(t) given above is the one we want.  

(c) We need to first find a H(s) such that H(s)Y(s)=X(s). Clearly, 

○ 

-1 

x 

1 

Im 

 

Re 

( b  

) 
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1 
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Re 

( a  

) 
x 

-2 
Figure S.9.47 
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( ) 1
( ) 1

( ) .
X s s
Y s s

H s 


   

The pole-zero plot for H(s) is as shown in Figure S9.47. Since h(t) is given to be stable, the ROC of 

H(s) has to be . The partial fraction expansion of H(s) is  
2

1
( ) 1 .

s
H s


   

Therefore, 

( ) ( ) 2 ( ).th t t e u t     

Also, Y(s) has the ROC . Therefore, X(s) must have the ROC  2 1e s    (the intersection 

of the ROCs of Y(s) and H(s) . From this we get (as shown in part (a)) 
22 1

3 3
( ) ( ) ( )t tx t e u t e u t    . 

Verification: Now, 

  2

2 2

0

( ) ( ) 2 ( ) ( )

( ) 2 ( )

t t

t t

h t y t t e u t e u t

e u t e e u t d 



 

 


  

         

  

 

For t>0, the integral in the above equation is 

3 21
3

t t

t
e e d e 


  . 

For t<0, the integral in the above equation is 
3 1

30

t te e d e 


  . 

Therefore, 
22 1

3 3
( ) ( ) ( ) ( ) ( )t th t y t e u t e u t x t      . 

9.48.  (a)  1 1/ ( )H s H s  

(b) Form the above relationship it is clear that the poles of the inverse system will be the zeros of 

original system. Also, the zeros of the inverse system will be the poles of the original system. 

Therefore, the pole-zero plot for  1H s is as sketched in Figure S9.48. 

9.49.  If a system is causal and stable, then the poles of its transfer function must all be in the left half of the 

s-plane. This is because the ROC of a causal system is to the right of the right-most pole. For the ROC 

to contain the jw-axis, the right-more pole must be in the left-half of the s-plane. 

          Now, if the inverse system is also causal and stable, then its poles must also all lie in the left half 

of the s-plane. But we know that the poles of the inverse system are the zeros of the original system. 

Therefore, the zeros of the original system must also lie in the left-half of the s-plane. 

9.50.  (a) False. Counter-example: 

      (b) True. If the system function has more poles than zeros, then h(t) does not have an impulse at t=0. 

Since we know that h(t) is the derivative of the step response, we may conclude that the step response 

has no discontinuities at t=0. 

(c) False . Causality plays no part in the argument of part (b) 

(d) False . Counter-example : H(s)= (s -1)/(s+2) , R(e) > -2 . 

 

 

 

 

9.51 . Since h(t) is real , its poles and zeros must occur in complex conjugate pairs . Therefore, the known 

poles and zeros of H(s) are as shown in Figure S9.51 . Since H(S) has exactly 2 zeros at infinity , H(s) 

has at least two more unknown finite poles. In case H(s) has more than 4 poles , then it will have a zero 

at some location for every additional pole . Furthermore , since h(t) is causal and stable, all poles of H(s) 

must lie in the left half of the s-plane and the ROC must include the jw-axis . 

     (a) True. Consider 

                        g(t) = h(t)  cte 3
G(t) = H(s+3). 

        The ROC of G(s) will be. the ROC of H(s) shifted by 3 to the left . Clearly this ROC will still 

include the jw-axis. Therefore , g(t) has to be stable . 

      (b) Insufficient information. As mentioned earlier, H(s) has some unknown poles . So we do not know 

which the rightmost pole is in H(s) . Therefore, we cannot determine what its exact ROC is . 

      (c) True, Since H(s) is rational, H(s) may be expressed as a ratio of two polynomials in s. Furthermore, 

Figure S.9.48 
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since h(t) is real, the coefficients of these polynomials will ba real . Now, 
 
 

 
  .)(
sQ

s

s

s
sH






  

            Here, P(s) and Q(s) are polynomial in s. The differential equation relating x(t) and y(t) is 

obtained by taking the inverse Laplace transform of Y(s)Q(s)=X(s)P(s).Clearly, this differential 

equation has to have only real coefficients. 

      (d) False. We are given that H(s) has 2 zeros at s = ∞, Therefore, lim ( ) 0.s H s   

      (e) True. See the reasoning at the beginning of the problem. 

      (f) Insufficient information. H(s) may have other zeros. See reasoning at the beginning of the problem. 

      (g) False. We know that          3 33 sin 1/ 2 1/ 2
j t j tte t j e j e

 
  .Both

 3 j t
e


and

 3 j t
e


 

         are Eigen functions of the LTI system. Therefore, the response of the system to these exponentials 

is 
 3

( )
j t

H s j e


  and 
 3

( )
j t

H s j e


 , respectively . Since H(s) has 

zeros at 3 j , we know that the output of the system to the two exponentials has to be zero. Hence, 

the response of the system to 
3 sin( )te t  has to be zero. 

9.52.  (a) Consider the signal y(t) = x(t- 0t ). Now, 

0( ) ( ) stY s x t t e





   

        Replacing t- 0t  by  , we get  

 0

0

0

( ) ( )

( )

( )

s t

st s

st

Y s x e d

e x e d

e X s





 

 

  




 














 

        This obvious converges when X(s) converges because 0st
e


 has no poles. Therefore, the ROC of 

Y(s) is the same as the ROC of X(s). 

      (b) Consider the signal y(t) = 0 ( )
st

e x t . Now, 

0

0( )

0

( ) ( )

( )

( )

s t st

s s t

Y s x e e dt

x e dt

X s s











 







 




 

         If X(s) converges in the range α<Re{s}<b, then 
0( )X s s converges in the range 

0 0s s b s     . This is the ROC of Y(s). 

      (c) Consider the signal y(t)=x(a t). Now, 

( ) ( ) stY s x t e dt





   

        Replacing at by and assuming that a >1, we get 

   

 

/
( ) 1/ ( )

1/ ( / )

s a
Y s a x at e d

a X s a




 






  

        If a<0, then 

   

 

/
( ) 1/ ( )

1/ ( / )

s a
Y s a x at e d

a X s a




 


 

 

  

        Therefore, 
1( ) ( )s

aa
Y s X  
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Chapter 10 Answers 

10.1  (a)The given summation may be written as  

         1

1

1 1
( )

2 2

jwn

n

r ne


 




 ,by replacing z with 

jwre . If r< 1

2
,then  11

1
2

r   

       And the function within the summation grows towards infinity with increasing n.. Also , the 

summation dose not converge. 

       But if r> 1

2
,then the summation converges. 

   (b) The given summation may be written as  

       1

1

1 1
( )

2 2

jwn

n

r ne


 



  , by replacing z with 
jwre . If r> 1

2
, then  2 1r   

       And the function within the summation grows towards infinity with increasing n ,. Also , 

the summation dose not converge. 

       But if r< 
1

2
, then the summation converges. 

( c )The summation may be written as  
0

( )

2

n n
jwn

n

r r
e

 




 
  . by replacing z with 

jwre . If 

r>1, then the  

      function within the summation grows towards infinity with increasing n ,. Also , the 

summation dose not converge. 

       But if r< 1, then the summation converges. 

(a) The summation may be written as 
0

1

0

1 1
( ) cos( / 4) ( ) cos( / 4)
2 2

n jwn n jwn

n n

r n e r n e 


   

 

   

by replacing z with 
jwre . The first summation converges for  r> 1

2
. The second summation  

converge  for r>2. Therefore, the sum of these 

two summations converges for 1/2<r<2 . 

 10.2  Using eq.910.3). 

                   
3

1 1
( ) ( ) [ 3] ( )

5 5

n n n n

n n

X z u n z z
 

 

 

     

                        
3 3

10

1 1
[ ] ( ) [ ]

1125 5 125
1

5

n n

n

z z
z

z

 




 




  ,  1

5
z 

 

10.18. (a) using the analysis of example10.18,we may show that   
1 2

2

2

1 6 8
( )

2 1
1

3 9

Z Z
H Z

Z
Z

 





 


 

 

Since h(z)=y(z)/x(z), we may write 

1 2 1 22 1
( )[1 ] ( )[1 6 8 ]

3 9
Y Z Z Z X Z Z Z        

Taking the inverse z-transform we obtain  
2 1

[ ] [ 1] [ 2] [ ] 6 [ 1] 8 [ 2]
3 9

y n y n n x n x n x n          

 (b) H (Z) has only two poles, these are both at z=1/3. Since the system is causal, the ROC of H (Z) will 

be the form z >1/3. Since the ROC includes the unit circle, the system is Stable. 

10.19. (a) The unilateral z-transform is  

0

1
( ) ( ) [ 5]

4

n n

N

x Z u n z






   

0

1
( )
4

n n

n

z







 

1

1 1
,

1 4
1 ( )

4

z

z




 

(b) The unilateral z-transform is 
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0

0

( ) ( [ 3] [ ] 2 [ ])

(0 [ ] [ ]

2,

n n

n

n

n

x z n n n z

n n z

 

 











    

  






 

All z 

The unilateral z-transform is  

0

1

1
( ) ( )

2

1
( )
2

1 1
,

1 2
1

2

n n

n n

n

x z z

z

z

z














 
 

  
 



 

10.20.Applying the unilateral z-transform to given difference equation, we have  
1 ( ) [ 1] 2 ( ) ( ).z y z y y z y z      

(a) For the zero-input response, assume that x[n]=0. Since we are given that y[-1]=2, 

1

1

1
( ) ( 1) 2 ( ) 0 ( ) .

1
1 ( )

2

z y z y y z y z

z






     



 

Taking the inverse unilateral z-transform, 

Y[n]= 1
( ) [ ].

2

n n   

(b) For the zero-state response set y[-1]=0. Also, we have  

1

1 1 1
( ) {( ) [ ] , .

12 2
1

2

nx z z n z

z

 


  



 

Therefore,  

1
1

1 2
( ) ( )( ).

1 2
1

4

y z
z

z









 

We use partial fraction expansion followed by the inverse unilateral z-transform to obtain 

        1 1 1 1
[ ] ( ) [ ] ( ) [ ].

3 2 6 4

n ny n n n     

( c)  The total response is the sum of the zero-input response. This is  
2 1 1 1

[ ] ( ) [ ] ( ) [ ].
3 2 6 4

n ny n n n      

10.21.the pole –zero plots are all shown in figure S10.21. 

  (a) For [ ] [ 5],x n n 
5( )x z z , all z. 

The Fourier transform exists because the ROC includes the unit circle. 

(b)  For x [n] = [ 5],n    

X (z)=
5z , all z expect 0. 

The Fourier transform exists because the ROC includes the unit circle. 

(c) For x [n]= ( 1) [ ],n n  

    
( ) [ ] n

n

X Z x n z







 

0

( 1)n n

n

z






   

11/(1 ), 1z z    

 The Fourier transform does not exist because the ROC does not include the unit circle 

(d) For x [n]= 11
( ) [ 3],
2

n n   

( ) [ ] n

n

X z x n z






   
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1

3

2 3

0

3

1

1
( )
2

1
( )
2

4 1
,

1 2
(1 ( ) )

2

n n

n

n n

n

z

z

z
z

z


 




  









 







 

(e) For x [n]= 1
( ) [ 2],

3

n n


   

( ) [ ] n

n

x z x n z






   

    

2

2

2 2

0

2

1

( 1/ 3)

1
( )

3

1
( )

3

9 /(1 3 ), 1/ 3

3
, 1/ 3

(1 (1/ 3) )

n n

n

n n

n

n n

n

z

z

z

z z z

z
z












  





 







  

 








 

The Fourier transform does not exist because the ROC does not include the unit circle. 

(f) For [ ] (1/ 4) [ 3],nx n n    

                  ( ) [ ] n

n

x z x n z






   

3

3

3 3

0

3

4 1

(1/ 4)

(1/ 4)

(1/ 4)

(1/ 64) /(1 4 ), 1/ 4

(1/16) /(1 (1/ 4) ), 1/ 4

n n

n

n n

n

n n

n

z

z

z

z z z

z z z











  





 







  

  







 

   The Fourier transform does not exist because the ROC includes the unit circle.     

(g) Consider 
1( ) 2 [ ].nx z n   

1 1( ) [ ] n

n

x z x n z






 
 

0

0

1 1

(2)

(2)

1/(1 (1/ 2) ), 2

2 /(1 2 ), 2

n n

n

n n

n

z

z

z z

z z z










 





  

   




 

Consider 
2[ ] (1/ 4) [ 1].nx n n   

2 2( ) [ ] n

n

x z x n z






   

 

1

1 1

0

1 1

(1/ 4)

(1/ 4)

/ 4 [1/(1 (1/ 4) )], 1/ 4

n n

n

n n

n

z

z

z z z







  



 





  




 

The z-transform of the overall sequence x [n]= 1 2[ ] [ ]x n x n  is  

1 1

1 1

2 / 4
( ) , (1/ 4) 2

(1 2 ) 1 (1/ 4)

z z
x z z

z z

 

 
    

 
 

The Fourier transform exist because the ROC include the unit circle. 
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(g) Consider x [n]=
2(1/ 3) [ 2].n n   

        ( ) [ ] n

n

x z x n z






   

2

2

2

0

2 1

(1/ 3)

(1/ 3)

[1/(1 (1/ 3) )], 1/ 3

n n

n

n n

n

z

z

z z z


 




 



 





  




 

   The Fourier transform exists because the ROC includes the unit circle. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure   S10.21 

10.22. ( a ) Using the z-transform analysis equation, 

 
4 4 3 3 2 2 1 1 0 0 1 1

2 2 3 3 4 4

( ) (1/ 2) (1/ 2) (1/ 2) (1/ 2) (1/ 2) (1/ 2)

(1/ 2) (1/ 2) (1/ 2)

X z z z z z z z

z z z

    

  

     

  
 

This may be express as  

     
9 9

4 4

1

1 (1/ 2)
( ) (1/ 2) [ ].

1 (1/ 2)

z
X z z

z










 

This has four zero at z=0 and 8 more zero distributed on a circle of radius 1/2. The ROC is the entire z 

plane. (Although form an inspection of expression for X(z) it seems like these is a pole at 1/2 which cancels 

with this pole.) Since the ROC includes the unit circle ,the Fourier transform exists. 

(b) Consider the sequence 

1[ ] (1/ 2) [ ] 2 [ 1].n nx n u n u n     

Now,  

(1/ 2) [ ]nu n     
z

 
1

1
, (1/ 2)

1 (1/ 2)
z

z




 

And  

(2) [ 1]nu n     
z

 
1

1
, 2.

1 2
z

z
 


 

Therefore, 

        
1 1 1

1 1
( ) , (1/ 2) 2.

1 (1/ 2) 1 2
x z z

z z 
   

 
 

Note that x [n]=n 1[ ]x n . Therefore, 

1 1

1 1 2 1 2

(1/ 2) 2
( ) ( ) .

(1 (1/ 2) ) (1 2 )

d Z Z
X z z X Z

dz Z Z

 

 
    

 
 

The ROC is (1/2)< z <2.Therefore, the Fourier transform exists. 

 (c) Write x [n] as  

1 2(1/ 2) [ ] 2 [ 1] [ ] [ ]n nn u n n u n nx n nx n      

05 3n ordu 
 

I

 

eR

 

MI
 MI

 

eR
 

nS  

( )a

 

( )b
 

eR
 

MI
 

( )d

 
eR

  

( )c
 

4n
 

MI
 

MI
 

eR
 

02 3nd ordu u

 

( )e
 

MI
 

eR
 

03rd orduku
 

( )f

 

1 

MI

 

eR
 

( )g

 

eR
 

MI
 

( )h
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  Where  

1[ ] (1/ 2) [ ]nx n u n     
z

      
1 1

1
( ) , 1/ 2

1 (1/ 2)
X z z

z
 



 

And  

        
2[ ] (2) [ 1]nx n u n          

z
   

2 1

1
( ) , 2

1 2
X Z Z

Z 
  



 

Using the differentiation property, we get  

   
1 1

1 2 1 2 1 2

(1/ 2) 2
( ) ( ) ( ) .

(1 (1/ 2) ) (1 2 )

d d z z
X Z z X z z X z

dz dz z z

 

 
     

 
 

The ROC is (1/2)< 2z  . Therefore, the Fourier transform exists. 

(d) The sequence may be written as  
[(2 / 6) ( / 4)]

[ ] 4 { } [ 1].
2

j n
n e

x n u n
 

    

Now 
/ 4

2 / 6 1

1
, 4

2 1 4

j

j

e
z

e z







 



 

[(2 /6) ( / 4)]4 [ 1]n j ne u n      
z

     
/ 4

2 / 6 1

1
, 4

2 1 4

j

j

e
z

e z



 



 

And  

[(2 /6) ( / 4)]4 [ 1]n j ne u n        
z

   
/ 4

2 / 6 1

1
, 4

2 1 4

j

j

e
z

e z







 



 

Therefore, 

X (z)= 
/ 4

2 / 6 1

1

2 1 4

j

j

e

e z







 

 + 
/ 4

2 / 6 1

1
, 4

2 1 4

j

j

e
z

e z



 



   

The ROC is 4z  . Therefore, the Fourier transform exists. 

10.23 （i）The partial fraction of  the given ( )x z  is  

      

1 1

1 3

2 2( )
1 1

1 1
2 2

X z

z z 



 

 

 

           Since the ROC is 1

2
z  . 

           
1 1 3 1

2 2 2 2

n n

x n u n u n
   

     
   

. 

           Performing long-division in order to get a right-sided sequence. we obtain  

       
51 2 3 41 1 1 1

1 ....
4 4 16 16

X z z z z z z
           

           This may be rewritten as  

         

  1 2 3 1 2 33 1 1 1 1 1 1 1
[1 ...] [1 ...]

2 2 4 8 2 2 4 8
X z z z z z z z                

   Therefore. 

              
1 1 3 1

2 2 2 2

n n

x n u n u n
   

     
   

. 

   (ii) The partial fraction of  the given ( )X z  is 

      

1 1

1 3

2 2( )
1 1

1 1
2 2

X z

z z 



 

 

 

   Since the ROC is 1

2
z 

. 

.           
1 1 3 1

1 1
2 2 2 2

n n

x n u n u n
   

        
   

. 
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   Performing long-division in order to get a left-sided sequence. we obtain  

        2 3 4 54 4 16 16 64 ...X z z z z z z       

   This may be rewritten as 

        2 3 4 2 3 43 1
[2 4 8 16 ....] [2 4 8 16 ...]

2 2
X z z z z z z z z z           

   Therefore. 

           
1 1 3 1

1 1
2 2 2 2

n n

x n u n u n
   

        
   

 

(iii) . The partial fraction of  the given ( )x z  is 
     

 
1

3

22
1

1
2

X z

z
  

 
  
 

 

   Since the ROC is 1

2
z 

. 

          
3 1

2
2 2

n

x n n u n
 

    
 

 

   Performing long-division in order to get a right-sided sequence. we obtain 

       1 2 31 3 1 3
....

2 4 8 8
X z z z z         

   This may be rewritten as 

       1 23 1 1
2 [1 ....]

2 2 4
X z z z      . 

     

    Therefore. 

     
     

3 1
2

2 2

n

x n n u n
 

    
 

 

 (iv) The partial fraction of  the given ( )x z  is 
     

 
1

3

22
1

1
2

X z

z
  

 
  
 

 

  Since the ROC is 1

2
z   

     
     

3 1
2 1

2 2

n

x n n u n
 

     
 

 

  Performing long-division in order to get a left-sided sequence. we obtain 
       2 3 42 3 6 12 24 ...X z z z z z        

  This may be rewritten as 

       2 3 43
2 [2 4 8 16 ...]

2
X z z z z z       . 

  Therefore. 

          
3 1

2 1
2 2

n

x n n u n
 

     
 

. 

 (v) The partial fraction of  the given ( )x z  is 

          
1

1 1
2 1

2 2

n n

x n n u n n u n



   
     

   

. 

  (vi) We may similarly show that in this case, 

          
1

1 1
2 1 2

2 2

n n

x n n u n n u n



   
         

   

. 

10.24  (a) We may write  X z  as 

        

 

1

1 1

1
( )

1
1 1 2

2

z
X z

z z



 



 
  

 

. 

        Therefore  
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       1

1

1
( )

1
1

2

z
X z

z







 
 

 

. 

        If  x n  is absolutely summable, then the ROC of ( )X z  has to include the unit circle 

Therefore, the ROC is 1

2
z  .It follow that 

       21
[ ] ( ) [ ]

2
x n u n

. 

  (b) Carrying out long division on ( )X z ,we get 

         1 2 21 1
1 ....

2 4
X z z z z       . 

   Using the analysis equation (10.3),we get 

       11
[ ] [ ] ( ) [ 1].

2

nx n n u n      

  (c) We may write ( )X z  as  

       
1 1

1 2 1 1

3 3
[ ]

1 1 1 1
1 (1 )(1 )

4 8 2 4

z z
X z

z z z z

 

   

 

   

. 

   The partial fraction of ( )X z is 

       

1 1

4 4
[ ]

1 1
1 1

2 4

X z

z z 

 

 

. 

Since [ ]x n  is absolute summable, the ROC must be 1

2
z   in order to include the unit 

circle. It follow that 

   2 21 1
[ ] 4( ) [ ] 4( ) [ ]

2 4
X z u n u n    

 10.25. (a) The partial fraction equation of ( )X z  is  

       
1

1

1 2
[ ]

1 1
1

2

X z
z

z




 




. 

Since [ ]x n  is absolute summable, the ROC must be 1z   in order to include the unit 

circle. It follow that 

    21
[ ] ( ) [ ] 2 [ ]

2
x n u n u n   . 

(b) ( )X z  may be rewritten as  

     2

[ ]
1

( )( 1)
2

Z
X z

Z Z



 

. 

  Using partialfraction expansion, we may rewrite this as 

     
2 21 2

[ ] 2 [ ] 2 [ ]
1 11 1

2 2

z z
X z z z

z z
z z

    
 

 

. 

 If [ ]x n  is right-side, then the ROC for this signal is 1z  .Using this fact, we may 

Find the inverse z-transform of the term within square bracket above to be 1
[ ] ( ) [ ] [ ]

2

ny n u n u n   . 

Note that  [ ] 2 [ ]X z zX z .Therefore , [ ] 2 [ 1].x n y n  This gives 

     11
[ ] 2( ) [ 1] 2 [ 1]

2

nx n u n u n      

Noting that [ 1] 0x   .we may rewrite this as 

1
[ ] ( ) [ ] 2 [ ]

2

nx n u n u n    

  This is the answer that we obtainly in part (a). 

 10.26 （a）Form part (b) of the previous problem , 
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       2

[ ]
1

( )( 1)
2

Z
X z

Z Z



 

. 

  (b) Form part (b) of the previous problem , 

       
[ ] 2 [ ]

1 1

2

z z
X z z

z
z

  




. 

  (c) If [ ]x n  is left-side, then the ROC for this signal is 1

2
z  .Using this fact, we may 

.Find the inverse z-transform of the term within square bracket above to be 
1

[ ] ( ) [ 1] [ 1]
2

ny n u n u n      . Note that  [ ] 2 [ ]X z zX z .Therefore , [ ] 2 [ 1].x n y n  This gives 

     11
[ ] 2( ) [ 2] 2 [ 2]

2

nx n u n u n      . 

10.27 We perform long-division on ( )X z  so as to obtain a right-seder sequence. This gives us   

       3 2( ) 4 5 ...X z z z z     

Therefore ,comparing this with eq.(10.3) we get 
   ( 3) 1x            ( 2) 4x          ( 1) 5x    

And ( ) 0x n  for n<-3 

10.28 (a) Using eq (10.3),we get 

    
6

6
6 95.0

95.01)(
z

z
zzX


  

(b) Therefore X(z) has zeros lying on a circle of radius 0.95(as shown is Figure S10.28)and 6 poles at z=0 

 

 

 

 

 

 

 

 

 (c) The magnitude Fourier transform is as shown in Figure S10.28 

10.29 The plots are as shown in Figure S10.29 

 

 

 

 

 

 

 

 

 

10.30 From the given information, we have 
      

1 1
1

1
( )

1
1

2

zx x z

z
 



        1
| |

2
z 

 

         And  
      

2 2
1

1
[ ] ( )

1
1

3

zx n x z

z
 



     1

3
z 

 

         Using the time shifting property, we get 

1 

6   

R

e 3

2

 

3



 

3



 
3

2

 

Figure S10.28 

Figure S10.29 

2



 

  
2




 

0 
  

  0       

0 


 

-   0 

 



 

0 
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3

1 1[ 3] ( )zx n z x z     1
| |

2
z 

 

  Using the time reversal and properties, we get 

      
1 1

1 1[ 1] ( )zx n z x z       3z   

  Now, using the convolution property, we get 

  2 1

1 2 1 2[ ] [ 3]* [ 1] ( ) ( ) ( )zy n x n x n Y z z X z X z       

       1
| | 3

2
z 

 

      Therefore  2

1

( )
1 1

(1 )(1 )
2 3

z
Y z

z z



 

 

 10.31 From Clue 1, we know that [ ]x n  is real. Therefore the poles and zeros of ( )X z have to occur in 

conjugate pairs, Since Clue 4 tells us that ( )X z  has a pole at 3
1

( )
2

j

z e



.we can conclude that ( )X z must 

have anther pole at 3
1

( )
2

j

z e




 .Now since ( )X z  has 

No more poles, we have to assume that ( )X z  has 2or less zeros. If ( )X z  has than 2 zeros, then ( )X z  must 

have poles at infinity, Since Clue 3 tell us that ( )X z  has 2 zeros at the origin, we know that ( )X z  must be of 

the from 
       2

3 3

( )
1 1

( ( ) )( ( ) )
2 2

j j

Az
X z

z e z e
 





 

 

Since [ ]x n  is right-sided, the ROC must be 1

3
z 

. 

10.32. (a) We are given that [ ] [ ]nh n a u n  and [ ] [ ] [ ]x n u n u n N   therefore 

  
1

0

[ ] [ ]* [ ] [ ] [ ] [ ]
N

n k

k k

y n x n h n h n k x k a u n k
 



 

       

Now. y[n] may be evaluated to be 

0

1

k=0

0,                      n<0

y[n]=  ,        0 1

,         1

n
n k

k

N
n k

n N

n N

a a

a a













  



 






 

Simplifying 

 

 

1 1

1

0,                                n<0

y[n]= 1 ,     0 1

1 1 ,    1

n

n n

n N

n N

a a a

a a a

 

 





    

    


 

(b)Using Table 10.2 we get 

H(z)= 
1

1
,

1 az




    |z|>|a| 

And         

X(z)= 
1

1
,

1

N

z
z








     All z, 

Therefore 

Y(z)=X(z)H(z)= 
1 1 1 1

1
,

(1 )(1 ) (1 )(1 )

N

a a

z
z z z z



   


   

 

The ROC is |z|>|a|, Consider 

P(z)= 
1 1

1

(1 )(1 )az z
 

 

 

With ROC |z|>|a|, The partial fraction expansion of P(z) is 

P(z)= 1

1 1

1 (1 )1 (1 )
,

1 1

a

a

a
z z



 




 

 

Therefore, 
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P[n]= 
1

1 1
[ ] [ ],

1 1

n
u n u n

a
a

a



 

 

Now, note that 

Y(z)=P(z)[ ]1- 
N

z
 , 

Therefore, 

   1

1 1
[ ] [ ] [ ] [ ] [ ] [ ] [ ] ,

1 1

n n N
y n p n p n N u n u n N u n u n N

a
a a

a




        

 

 This may be written as 

 

 

1 1

1

0,                                n<0

y[n]= 1 ,     0 1

1 1 ,    1

n

n n

n N

n N

a a a

a a a

 

 





    

    


 

This is the same as the result of part(a). 

10.33. (a) Taking the z-transform of both sides of the give difference equation and simplifying, 

We get 

1 2

( ) 1
( ) .

1 1( )
1

2 4

Y z
H z

X z
z z

 

 

 

 

The poles of H(z) are at (1/4) ( 3 4).j Since h[n] is causal, the ROC has to be 

| | | (1 4) ( 3 4) | 1 2z j  （ ）. 

    (b) We have 

1

1 1
( ) , | | .

1 2
1

2

X z z

z


 



   

 

Therefore, 

1 1 2

1
( ) ( ) ( ) .

1 1 1
(1 )(1 )

2 2 4

Y z H z X z

z z z
  

 

  

 

The ROC of Y(z) will be the intersection of the ROCs of X(z) and H(z).This implies that the ROC of Y(z) 

is |z|>1/2.The partial fraction expansion of Y(z) is 
1

1 1 2

21
( ) .

1 1 1
1 1

2 2 4

Y z z

z z z



  

 

  

 

Using Table 10.2 we get 

2
[ ] [ ] sin [ ].

23

1 1

2 2

n n

n
y n u n u n

 
   

 

   
   
   

 

10.34.(a) Taking the z-transform lf both sides of the give difference equation and simplifying, we get 
1

1 2

( )
( ) .

( ) 1

Y z
H z

X z

z
z z



 
 

 

 

The poles of H(z) are at z=  (1/ 2) 5 2 . H(z) has a zero at z=0.The pole-zero plot for H(z) is as 

shown in Figure S10.34.since h[n] is causal, ROC for H(z) has to be |z|>  (1/ 2) 5 2 .  

(b) The partial fraction expansion of H(z) is 

1 1

1 5 1 5
( ) .

1 5 1 5
1 1

2 2

H z

z z
 

  
    

    
   

 

Therefore, 

 
1 1

[ ] [ ].
5 5

1 5 1 5

2 2

n n

h n u n u n  
    
   
   

 

 (c). Now assuming that the ROC is    5 2 (1/ 2) | | (1/ 2) 5 2 ,z     we get 

 

 
1 1

[ 1] [ ].
5 5

1 5 1 5

2 2

n n

h n u n u n    
    
   
   

 

10.35. Taking the z-transform of both sides of the given difference equation and simplifying. We get 
1

1 1 2

( ) 1
( ) .

5 5( )
1 1

2 2

Y z
H z

X z

z

z z z



  

  

   

 

The partial fraction expansion of H(z) is 

1 5

2



 
1 5

2



 Figure S10.34 
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1
1

2 3 2 3
( ) .

1 1 21
2

H z

zz





 



 

If the ROC is |z|>2,then 

   1

2 2
[ ] [ ].

3 3

1
2

2

n

n

n u n u nh   
 
 
 

  

If the ROC is 1/2<|z|<2,then 

   2

2 2
[ ] [ 1].

3 3

1
2

2

n

n

n u n u nh     
 
 
 

 

If the ROC is |z|<1/2,then 

   3

2 2
[ 1] [ 1].

3 3

1
2

2

n

n

n u n u nh      
 
 
 

 

For each  
i

nh ,we now need to show that if y[n]=  
i

nh  in the difference equation, then x[n]= 

[ ]n .Consider substituting  
1

nh  into the difference equation .This yields 

       

1 1

1 12 2 5 5 2 2
[ 1] [ 1] [ ] [ ] [ 1] [ 1]

3 3 3 3 3 3

1 1 1
2 2 2

2 2 2

n n n

n n n

u n u n u n u n u n u n x n

 

 

         
     
     
     

      

Then, 

[ ]x n =0,    for n<-1, 

[ 1]x  =2/3-2/3=0, 

[ ]x n =0,    for n>0. 

It follows that [ ]x n = [ ]n .it can similarly be  
2

nh  and  
3

nh
 satisfy the difference equation. 

10.36. Taking the z-transform of both side of the given difference equation and simplifying, we get 
1

1 1 2

( ) 1
( ) .

10 10( )
1

3 3

Y z
H z

X z
z

z

z z z



  

  

   

 

The partial fraction expansion of H(z) is 

1
1

3 8 3 8
( ) .

1 1 31
3

H z

zz




 


 

Since H(z) corresponds to a stable system, the ROC has ro be (1/3)<|z|<3.Therefore, 

 3 3
[ ] [ ] [ 1].

8 8

1
3

3

n

n

h n u n u n    
 
 
 

 

10.37. (a) The block-diagram may be redrawn as show in part (a) of the figure below . This may be treated as a 

cascade of the two systems shown within the dotted lines in Figure S10.37. These tow systems may be 

interchanged as shown in part (b) of the figure Figure S10.37 without changing the system function of the 

overall system. From the figure below, it is clear that 
9 1 2

[ ] [ ] [ 1] [ 1] [ 2].
8 3 9

y n x n x n y n y n      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b)Taking the z-transform of the above difference equation and simplifying , we get 
1 1

1 2 1 1

9 9
1 1

( ) 8 8( ) .
1 2 2 1( )

1 (1 )(1 )
3 9 3 3

Y z
H z

X z

z z

z z z z

 

   

 

  

   

 

x[n] y[n] 

-1/3 

1

z


 

2/9 

1

z


 

9/8 

1

z


 

System I System II 

 

y[n] x[n] 

y[n-1] 

y[n-1] 

9/8 -1/3 
1

z


 

2/9 

1

z


 

x[n-1] 

1

z


 

Figure S10.37 
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H(z) has poles at z=1/3 and z=-2/3. Since the system is causal. The  ROC has to be |z|>2/3. The ROC 

includes the unit circle and hence the system is stable. 

10.38.(a)    
1 1

,n nfe   

(b)    
2 2

,n nfe   

(c) Using the results of part (a) and (d), we may redraw the block-diagram as shown in Figure S10.38. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (d) Using the approach shown in the examples in the textbook we may draw the block-diagram of 
1 1

1
( ) [1 (1 4) ] [1 (1 2) ]zH z z

 
    and 1 1

2
( ) [1 2 ] [1 (1 4) ]zH z z

 
    as shown in the dotted boxes in the 

figure below. H(z) is the cascade of these two systems. 

(e) Using the approach show in the examples shown in the textbook, we may draw the block-diagram of 

1
( ) 4zH  ,

1

2
( ) [5 3] [1 (1/ 2) ]zH z


  and 1

3
( ) [ 14 3] [1 (1/ 4) ]zH z


    as shown in the dotted boxes in the 

figure below. H(z) is the parallel combination of 
1
( )zH ,

2
( )zH ,

3
( )zH . 

10.39. (a) The direct form block diagram may be drawn as shown in part(a-i) of Figure S10.39 by noting that 

1
1 2 3 4

1
( ) .

5 16 5 1
1

3 36 18 36

zH
z z z z

   



   

 

The cascade block-diagram is as shown in part (a-ii) of Figure S10.39. 

 

 

 

 

 

 

 

 

 

Figure S10.39 

 

y[n] 
x[n] 

1

z


 

-1/2 1/4 

1

z


 

-2 1/4 

A 

B 

C 

D 

1

z


 

1

z


 

1

z


 

1

z


 

x[n] y[n] 

x[n] 

y[n] 

-2/3 -z/4 

1/8 -1/2 

1

z


 

1

z


 

x[n] 
y[n] 

5/3 

1

z


 

-14/3 

4 

-1/2 

1/4 

1

z


 

Figure S10.38 

r 

1

z


 

1

z


 

1

z


 

1

z


 

x[n] y[n] 

  


   
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Part(a): A=5/3,B=11/36.C=15/54,D=1/36 

Part(b): A=3/2,B=-1.C=5/4,D=-1/2 

Part(b): A=2,B=-z/4.C=3/4,D=-1/8 

Part(a):  =1,  =-1/4,r=2/3, =-1/9 

Part(a):  =1,  =-1/2,r=1/2 =-1 

Part(a):  =1,  =-1/2,r=1, =-1/4 

 

Note that 

1
1 1 1 1

1 1 1 1
( ) .

1 1 2 2
1 1 1 1

2 2 3 3

zH
z z z z

   

      
      

       
         

       

 

Therefore, 
1
( )zH  may be drawn as a cascade of four systems for which the coefficient multipliers are all 

real. 

(b)The direct form block diagram may be drawn as shown in part (b-i) of Figure S10.39 by noting that 

2
1 2 3 4

1
( ) .

3 5 1
1 2

2 4 2

zH
z z z z

   



   

 

The cascade block-diagram is as shown in part(b-ii) of Figure S10.39. 

Now that 

2
1 1 1 1

1 1 1 1
( ) .

(1 ) 1 1 15 1 151 1 1 1
2 2 4 4

z
j j j j

H
z z z z

   

      
      

                   
          

 

Therefore, 
1
( )zH  cannot be drawn as cascade of four systems for which the coefficient multipliers are 

all real. 

(c) The direct form block diagram may be drawn as shown in part(c-i) of the Figure S10.39 by noting that 

3
1 2 3 4

1
( ) .

7 3 1
1 2

4 4 8

zH
z z z z

   



   

 

The cascade block-diagram is as shown in part(c-ii) of the Figure S10.39.  

 

Note that 

 
 3

1 1 11

1 1 1 1

1 1 11
1 1 11

2 2 22

z
ij

z z zz
h

  

       
       

                 
        

 

Therefore,  1H z cannot be drawn as a cascade of four systems for which the coefficient 

Multipliers are all real. 

10.40.The definition of the unilateral z-transform is 

   
0

n

n

x z x n z






  

(a) since x[n]= [n-5] is zero in the range 0  n   ,x(z)=0. 

(b) The unilateral of Laplace transform of x[n]=  [n-5]  

Is 

    5

0

  [ n - 5 ]n

n

x z z e


 



   

(c) The unilateral of Laplace transform of x[n]=    1
n
u n  is 

              1
0

1
( ) 1 [ ]

1

n n

n

x z u n z
z







  


 , z >1 

(d)The unilateral of Laplace transform of   (1/ 2) [ 3]nx n u n   is 

             0

0

1

( ) (1/ 2) [ 3]

(1/ 2)

1

1 (1/ 2)

n n

n

n n

n

x z u n z

z

z













 










, z >1/2. 
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(e)Since x[n]=(-1/3)u[-n-2] is zero in the range 0 n  , x(z)=0. 

(f) The unilateral of Laplace transform of   (1/ 4) [ 3]nx n u n    is 

          

0

0

1 2 3

( ) (1/ 4) [ 3]

(1/ 4)

1 1 1
1

4 16 64

n n

n

n n

n

x z u n z

z

z z z











  

  



   




,All z.  

 (g) The unilateral of Laplace transform of [ ] 2 [ ] (1/ 4) [ 1]n nx n u n u n     is 

           0

0

1

( ) 2 [ ] (1/ 4) [ 1]

(1/ 4)

1

1
1

4

n n n

n

n n

n

x z u n u n z

z

z













   











  ,All z. 

(h) The unilateral of Laplace transform of 2[ ] (1/ 3) [ 2]nx n u n   is 

             2

0

2

0

2

1

( ) (1/ 3) [ 2]

(1/ 3)

1
1

2

n n

n

n n

n

x z u n z

z z

z

z


 




 







 











      z >1/2.   

10.41.from the given information, 

                 

1

1

0

0

1

( ) (1/ 2) [ 1]

(1/ 2) (1/ 2)

1/ 2

1 (1/ 2)

n n

n

n n

n

x z u n z

z

z


 










 










 z >1/2. 

And 

            
 2

0

0

1

(1/ 4) [ ]

(1/ 4)

1

1 (1/ 4)

n n

n

n n

n

x z u n z

z

z
























 z  >1/4. 

Using Table 10.2 and the time shift property we get 

           
1

1

( )
1

1
2

z
X z

z




  , z >1/2. 

And 

2
1

1
( ) ,

1
1

4

X z z

z




>1/4. 

(a) We have 

                   
1 2

1 1

( ) ( ) ( )
1 1

(1 )(1 )
2 4

z
G z X z X z

z z 

 

 

. 

The ROC is |z|>(1/2).The partial fraction expansion of G(z) is  

1 1

2 1
( )

1 1
1 1

2 4

G z z

z z 

 
 

  
  
 

. 

Using Table 10.2 and the time shift property ,we get  
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                    1 11 1
[ ] 2( ) [ 1] ( ) [ 1]

2 4

n ng n u n u n     . 

(b) We have                     

1 2
1 1

1/ 2
( ) ( ) ( ) .

1 1
(1 )(1 )

2 4

Q z X z X z

z z 

 

 

 

The ROC of Q(z) is |z|>(1/2).The partial fraction expansion of y(z) is  
                     

1 1

1 2 1
( ) .

1 12
1 1

2 4

Q z

z z 

 
 

  
  
 

 

Therefore, 

                    1 1 1
[ ] ( ) [ ] ( ) [ ].

2 2 4

n nq n u n u n   

Clearly, q[n]  g[n] for n>0. 

10.42. (a)Taking the unilateral z-transform of both sides of the given difference equation .we get  

                          1( ) 3 ( ) 3 [ 1] [ ].Y z z Y z Y X z     

Setting x(z) =0,we get  
                              

1

3
( ) .

1 3
Y z

z





 

The inverse unilateral z-transform gives the zero-input response 

                              1[ ] 3( 3) [ ] ( 3) [ ].n n

ziy n u n u n      

   Now, since it is given that [ ] (1/ 2) [ ],nx n u n we have  

                              

1

1
( ) ,

1
1

2

X z

z




   |z|>1/2. 

Setting  y[-1] to be zero ,we get  
                           

1

1

1
( ) 3 ( ) .

1
1

2

Y z z Y z

z





 



 

Therefore, 
                          

1 1

1
( ) .

1
(1 )(1 3 )

2

Y z

z z 



 

 

The partial fraction expansion of ( )Y z  is  
                         

1
1

1/ 7 6 / 7
( ) .

1 1 3
1

2

Y z
z

z




 




 

The inverse unilateral z-transform of both sides of the given difference equation ,we get  

                       1 11 1 1
( ) ( ) [ 1] ( ) ( ).

2 2 2
Y z z Y z y X z z X z        

Setting ( ) 0X z  , we get 

                         Y(z)=0. 

The inverse unilateral z-transform gives the zero-input response 

                         [ ] 0.ziy n   

 Now , since it is given that [ ] [ ],x n u n we have  

                        
1

1
( ) ,

1
X z

z



    |z|>1. 

Setting y[-1] to be zero, we get  

                      
1

1

1 1

1 1 (1/ 2)
( ) ( ) .

2 1 1

z
Y z z Y z

z z




 
  

 
                  Figure S10.46 

Therefore, 

                                
1

1
( ) .

1
Y z

z



 

The inverse unilateral z-transform gives the zero-state response 

                                [ ] [ ].zsy n u n                     

(c) Taking the unilateral z-transform of both sides of the given difference equation ,we get  

                    1 11 1 1
( ) ( ) [ 1] ( ) ( ).

2 2 2
Y z z Y z y X z z X z       

/ 4  

IM 

Re 
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Setting ( ) 0,X z  , we get  
                        

1

1/ 2
( ) .

1
1

2

Y z

z




 

10.46.Taking the z-transform of both sides of the difference equation relating x[n] and s[n] and simplifying, we 

get 

                  

 

8 8
8 8

1 8
( ) 1

X z z e
H z z e

s z z





 

     

The system has an 8
th

 order pole at z=0 and 8 zeros distributed around a circle of radius e 
. This is show in 

Figure S10.46. The ROC is everywhere on the z-plane except at z=0. 

 (b)We have 
        

 
 

 

 

   2

1

1Y z S z
H z

X z X z H z
  

    

Therefore, 

        
8

2 8 8 8 8

1

1

z
H z

z e z e   
 

 
 

There are two possible ROCs for  2H z  : z e 
 or z e 

. If the ROC is z e 
,then the ROC 

dose not include the unit circle. This in turn implies that the system would be unstable and anti-causal. If the 

ROC is z e 
,then the ROC includes the unit circle. This in turn implies that the system would be stable 

and causal. 

(d) We have 

            2 8 8

1

1
H z

z e  



. 

We need to choose the ROC to be z e 
 in order to get s stable system. Now consider 

                  1 8

1

1
P z

z e  



 

With ROC z e 
.Taking the inverse z-transform, we get 

                 
8[ ] [ ]np n e u n . 

Now, note that 

                     8

2H z P z . 

From Table 10.1 we know that 

 

 

 

 

10.47. (a) From Clue 1,we have H(-2)=0.From Clue 2, we know that when 
              

 
1

1 1
,

1 2
1

2

X z z

z




 

We have 

             
 

1

1
1 ,

1 4
1

4

Y z z

z





 



. 

Therefore, 

              
 

 

 

1 1

1

1 1
1 1

14 2
, .

1 4
1

4

z z
Y z

H z z
X z

z

  



  
    

   



 

Substituting z=-2 in the above equation and nothing that N(-2)=0,we get 

              9

8
   . 

(b)The response to the signal x[n]=1=1n
. Therefore , 

                   1
[ ] (1)

4
y n H 

. 

 2h n 
 

 /8 , 0, 8, 10,np n e n   
 

0,   otherwise 
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10.48. from the pole-zero diagram, we many write 

                    
 

/ 4 / 4

2
3 / 4 3 / 4

1 1

2 2

1 1

2 2

j j

j j

z e z e

H z B

z e z e

 

 





  
   

  
  

   
  

  

And 

 

3 / 4 3 / 4

2
/ 4 / 4

1 1

2 2

1 1

2 2

j j

j j

z e z e

H z B

z e z e

 

 





  
   

  
  

   
  

 

Where A and B are constants. now note that 

            2 1 1

3 3

2 2

jB B
H z H ze H z

A A

   
     

   

  

Using the property 10.53 of the z-transform(see Table 10.1),we get 

              
   2 1

2
.

3

n
B

h n h n
A

 
  

 

  

We may rewrite this as 

     2 1 ,h n g n h n  

Where 
naBng )3/2)(/(][  .Note that since both ][1 nh  and ][2 nh  are causal. We may assume that 

g[n]=0 for n<0 .Therefore . 

                             n

A

B
ng )

3

2
(][  u[n] . 

  Now ,clue 3slao states that 3|][|
0




k

kg .Therefore . 

                            



0k A

B
3)

3

2
(  k    

  Or  

                             3
3/21

1


A

B          1
A

B  

  Therefore , 

                               g[n]=(-
3

2
)

n
u[n] . 

10.49 .(a) We may write the left side of eq. (p10.49-1)  as  

       




 n

Nn

rnx 1

1

|][| 


 1

|][|
Nn

nx (r 0

0

1

r

r
)

n
= 



 1

|][|
Nn

nx r
n

0 (

0

1

r

r
)

n
  )149.10( s  

       Since  r 01 r ; the sequence (r 01 / r )
n

 decays with increasing n . i . e .,as n->  

       (r 01 / r )
n

 ->0 . Therefore , (r 01 / r )
n  (r 01 / r ) 1N

 for n 1N .Substituting this in 

       eq. )149.10( s  , we get 

              




 n

Nn

rnx 1

1

|][| 


 1

|][|
Nn

nx r
n

0 (

0

1

r

r
)

n  1)(
0

1 N

r

r 




 1

|][|
Nn

nx r
n

0  

      Therefore , A= (r 1 /r 0 ) 1N
=(r 0 /r 1 ) 1N

. 

     (b)The above inequality shows that if X(z) has the finite bound  B for |z|=r 0  ;thenX(z) has the finite 

bound (r 0 /r 1 ) 1N
B for |z|= r 01 r . Thus ,X(z) converges for  |z|= r 01 r .and Property 4 of Section 

10.2 follows . 

     (c)Consider a left-sided sequence x[n] such that 

                               x[n]=0 , n>N 2  

      and for which  

                 






n

nrnx 0|][| = 


2N

n

nrnx 

0|][|  

Then we need to show that if r 1  0r  , 
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                


2N

n

|x[n]|r
n

1  P 


2N

n

nrnx 

0|][|       (s10.49-2) 

When P is a positive constant . 

  We may write the left side of eq. (s10.49-2 




2N

n

|x[n]|r
n

1 = 


2N

n

|x[n]| (r 0

0

1

r

r
)

n
= 



2N

n

nrnx 

0|][|
n

r

r )(
0

1
   (s10.49-3) 

Since 01 rr  ;the sequence  (r 01 / r )
n

decays with decreasing n , i.e., as  

n->  (r 01 / r )
n

->0 .Therefore , (r 01 / r )
n  (r 01 / r ) 2N

 for. n 2N  

 .Substituting this in eq (s10.49-3) .We get  




2N

n

|x[n]|r
n

1 = 


2N

n

|x[n]| (r 0

0

1

r

r
)

n  2)(
0

1 N

r

r 




2N

n

nrnx 

0|][|  

Therefore ,P=(r 1 /r 0 ) 2N
=(r 0 /r 1 ) 2N

 

The above inequality show that if X(z) has if X(z) has the finite bound B for |z|=r 0  .then X[z] has 

the finite bound  (r 0 /r 1 ) 2N
B for |z|=r 1 r 0 .Thus ,X(z) converges for |z|= r 1 r 0  and Property 5 of 

Section 10.2 follows . 

10.50.(a) From the given pole-zero plot ,we get  

                                 H(z)=A
1

1

1 







az

az  , 

       Where A is some constant .Therefore  

                               H(e
j

)=A




j

j

ae

ae








1

 

      And  

                |H(e
j

)|
2

= H(e
j

)H
jwe* =|A|

2
[





j

j

ae

ae








1
][





j

j

ae

ae





1

] 

Therefore  

|H(e
j

)|
2

=|A|
2

2

2

1

1

aaeae

aaeae
jwj

jj












=|A|
2

. 

  This implies that |H(e
j

)=|A|=constant . 

(b) We get |v 1 |
2

=1+ a
2

 -2acos( ). 

(c )We get  

         |v 2 |
2

=1+
2

1

a
- cos

2

a
=

2

1

a
[ a

2
+1+2a cos ]=

2

1

a
 |v 1 |

2
 

10.51.（a） We know that for a real sequence x[n],x[n]=x ][* n .Let us first find the z-transform of x ][* n  in 

terms of X[z],the z-transform of x[n]. We have  

                   Y(z)= 


n

y[n]z
n

= 


n

x ][* n z
n

 

                      =[ 


n

x[n](z
*

)
n

]
*

=[X(z
*

)]
*

. 

Now since x[n]= x ][* n ,we have Z{x[n]}=z{ x ][* n }which in turn impels that X(z)=X
*

 (z
*

) . 

(b) If X(z) has o pole at z=z 0 .then 1/X(z 0 )=0.From the result of the previous part , 

 We know that                  
)(

1
*

0

* zX

=0 . 

Conjugating both sides ,we get 1/ )( *

0zX =0. this implies that X(z) has a pole at z
*

0  . 

If X(z ) has a zero at z=z 0 .then X(z 0 )=0.From the result of the  previous part , 

We know that  

               )( *

0

* zX =0 . 
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Conjugating both sides ,we get X(z
*

0 )=0.This implies that X(z) has a zero at z
*

0  . 

(c) (1) The z-transform of given sequence is  

                    X(z)= 

1

1

1 1
1

2 2

z

z z



 

 ,  |z|>1/2 

Clearly ,X(z) has a pole at z=1/2 and a zero at z=0 and the property of part (b)holds . 

(2) The z-transform of the given sequence is  

     X(z)= 2
1 2

2

1 1 (1/ 2) (1/ 4)
1 ,| | 0.

2 4

z z
z z z

z

  
   

 

  X(z) has two zero at z=1/2 and z zero at z=0  and the property of part(b) still holds 

(d) Now ,from part (b) of problem 10.43 we know that if x[n] and X(z) has a pole at z
0

jpe  , then 

X(z) has a pole at (1/z 0 )=
*

0(1/ )z  (1/ ) je  
 

If x[n] is real and X(z) has a pole at z
0

jpe   ,then from part (b) we know that X(z) must 

have a pole at z
*

0
=  je 

. ,then X(z) must have a pole at 
*

0(1/ )z  (1/ ) je  . 

A similar argument may be constructed for zeros . 

10.52 . We have          
                         

2 2[ ] n

n

X x n z






 
 

                             =
1[ ] n

n

x n z






  

                             =
1[ ] n

n

x n z





 

                             = 1

1 1( ) (1/ )X z X z   . 

Using an argument similar to the one used on part (b) of problem 10.43 .we may argue that if 1( )X z has a 

pole (or zero) at z= 0z , then 2 ( )X z  which has a pole (or zero) at z=1/z 0 . 

10.53 .Let us assume that x[n] is a sequence with z-transform X(z) which has  the ROC 

| |z    . 

(a) (1) The z-transform of the sequence y[n]=[n-n 0 ] is  

                     Y(z)= [ ] n

n

y n z






  

                            = 0[n-n ] n

n

x z






  

      Substituting m= n-n 0  in the above equation ,we get  

                       Y(z)= 0[ ]
m n

m

x m z


 



   = = = 0 [ ]
n m

m

z x m z


 



  

                           = 0n
z


X(z) . 

    Clearly ,Y(z) converges where X(z) converges except for the addition or deletion of z=0  

because of the 0n
z


 term .Therefore ,the ROC is | |z   .except for the possible addition of z=0 in the 

ROC . 

(2) The z-transformer the sequence y[n]= 0 [ ]nz x n  is  

                 Y(z)= [ ] n

n

y n z






  

                    = 
0 [ ]n n

n

z x n z






  

                    = 
0[ ]( / ) n

n

x n z z






  

                    =X( 0/z z ) 

   Since X(z) converges for | |z   ,Y(z) converges for 0| / |z z   , Therefore , 
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the ROC of Y(z) is 0 0| | | | | |z z z   . 

(b) (1) From Problem 10.51 (a) ;we know that the z-transform of the sequence y[n]= 
*[ ]x n  is 

Y(z)= 
* *[ ]X z .The ROC of Y(z) is the same as the ROC of X(z). 

(2)Suppose that the ROC of x[n] is | |z   ,From subpart (2) of part (a).the z-transform of 

0[ ] [ ]ny n z x n  is  

                              Y(z)=X( 0/z z ) 

With ROC 0 0| | | | | |z z z   .Therefore 
0| |y xR z R .   

10.54. (a) Let x[n]=0 for n>0. Then , 

                     
-n

n=-

X(z)= x[n]z




  

                         = 

0
-n

n=-

x[n]z


  

                         =x[0]+x[-1]z+x[-2]z
2

+……. 

Therefore 

                    
0

lim ( ) [0]
z

X z x


 . 

(b) Let x[n]=0 for n<0 .Then , 

                        -n

n=-

X(z)= x[n]z




 = -n

n=o

x[n]z


  

                            = x[0]+x[-1]z+x[-2]z
2

+……. 

  Therefore , 

              
1 2lim ( ( ) [0] lim { [1] [ 2] .....}

z z
z X z x z z z x z 

 
     =x[1]. 

10.55. (a) From the initial value theorem ,we have  

                              lim
z

X(z)=x[0]non-zero and finite . 

       Therefore ,as z->  ,X(z) tends to a finite non-zero value .This implies that X(z) has neither poles 

zeros at infinity .     

      (b) A rational z-transform is made up of factors of the form 1/(z-a) and (z-b) . Note that the factor 

1/(z-b) has a pole at z=a and a zero at z=  .Also note that the factor (z-b) has a zero at z=  .From the result of 

part (a) ,we know that a causal sequence has no pole or zero at infinity .Therefore ,all zeros at infinity 

contributed by factors of the form 1/(z-a) .Consequently ,the number of zeros in the finite z-plane must equal 

the number of poles in the finite z-plane . 

10.56. (a) The z-transform of 3[ ]x n  is   

                           
3 3( ) [ ] n

n

x z x n z






   

                                = 
1 2[ [ ] [ ]] n

n k

x k x n k z
 



 

 
 

                                = 
1 2[ ][ [ ] n

k n

x k x n k z
 



 

  ] 

                                = 
1 2[ ] { [ ] }n

k

x k Z x n k z






  

                                = 
1 2[ ] ( )

k

x k x z





 

(b) Using the time shifting property (10.5.2) ,we get  
                         

2 2 2( ) { [ ]} ( ),kx z Z x n k z X z    

  Where 2X (z) is the z-transform of 2[ ]x z .Substituting in the result of part (a) ,we get  

                              
3 2 1( ) ( ) [ ] k

k

X z X z x k z






   
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(c) Nothing that the z-transform of  1x n  may be written as 

1( )X z =  1

kx k z






 ; 

     We may rewrite the result of part (b) as 

                      3 1 2( ) ( ) ( )X z X z X z . 

10.57.(a) 1( )X z  is a polynomial of order 1N  in 
1Z 

. 1( )X z  is a polynomial of order 2N in 

1Z 
.Therefore, 

1 2( ) ( ) ( )Y z X z X z  is a polynomial of order 1 2N N  in 
1Z 
 . this implies that 

M= 1 2N N . 

     (b)  By nothing that y[0] is the coefficient of 
0Z term in Y(z). y[1] is the coefficient of 

1Z 
 term in 

Y(z),and y[2] is the coefficient of 
2Z 

 term in Y(z). we get                

                        y[0]= 1 2[0] [0]x x , 

                        y[1]= 1 2 1 2[0] [1] [1] [0]x x x x , 

                        y[3]= 1 2 1 2 1 2[0] [2] [1] [1] [2] [0]x x x x x x  . 

     (c)  we note the pattern that emerge form part (b). The k-th point in the sequence y[n] is the coefficient 

of 
kZ 

 in Y(z), The 
kZ 

 term of Y(z) is formed by the following sum :(the product of  the 
0Z  term of 1( )X z  with the 

kZ 
 term of 2 ( )X z )+( the product of  the 

1Z 
 term of 1( )X z  

with the
1kZ  
 term of 2 ( )X z )+( the product of  the 

2Z 
 term of 1( )X z  with the 

2kZ  
 

term of 2 ( )X z )+…….+( the product of  the 1NZ 
 term of 1( )X z  with the 1k NZ  

 term of 

2 ( )X z ). 

         Therefore, 

                         y[k]= 1

1 2[ ] [ ]
N

m

x m x m k


  

         Since 1X [m]=0 for m> 1N  and m<0, we may rewrite this as 

                          
1 2[ ] [ ] [ ]

m

y k x m x m k




  . 

10.58 Consider a causal and stable with system function ( )H z .Let its inverse system have the function 

( )iH z .The poles of ( )H z are the zeros of ( )iH z  and the zeros of ( )H z  are the poles of ( )iH z . 

For ( )H z  to correspond to be a casual and stable system, all its poles must be within the unit circle. 

Similarly, for ( )iH z  to correspond to be a casual and stable system, all its poles must be within the unit 

circle. Since the poles of ( )iH z  are the zeros of ( )H z ,the previous statement implies that the zeros of 

( )H z  must be within the unit circle. Therefore, all poles and zeros of a minimum-phase system must be 

within the unit circle. 

10.59 (a) From Figure S10.59, we have 

                1( )W z = 1

1( ) ( )
3

k
X z z W z   =>     

1( )W z = ( )X z

1

1

1
3

k
z

 

Also                
1

1

2 1
1

4W ( ) X( )
4

1
3

k
z

k
z W z z

k
z









   



   

  
1 2, ( ) ( ) ( ) Therefore Y z W z W z  will be  

                 1

1 1

1 4Y(z) ( ) X( )

1 1
3 3

k
z

X z z
k k

z z



 

 

 

 

Finally,                 1

1

1
Y(z) 4( )

( )
1

3

k
z

H z
kX z

z







 


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Since ( )H z  corresponds to a causal filter ,the ROC will be |z|>|k|/3. 

(b) For the system to be stable, the ROC of ( )H z must include the unit circle . This is possible only if 

|k|/3<1.This is implies that |k| has to be less than 3. 

 

(c) If k=1,then 

                    ( )H z =
1

1

1

4
1

1
3

z

z





 

  The  response  to x[n]= (2 / 3)n  will be of the form  

                    y[n]=x[n]H(2/3)= 5
(2 / 3)

12

n . 

10.60. The unilateral z-transform of y[n]=x[n+1] is  

                    -n

n=0

y[z]= y[n]z  


  

                          

 

1 2

1 2

1 2 3

(0) [1] [2] ......

[1] [2] [3] ......

[0] [1] [2] [3] ...... [0]

( ) [0].

y y z y z

x x z x z

z x x z x z x z zx

z z zx

 

 

  

   

   

    

 

  

10.61.(a) The unilateral z-transform of y[n]=x[n+3] is  

                    
0

( ) [ ] n

n

y z y n z






  

                           

0

3 2

0

3 3 2

0

3 3 3 2

0

3 3 2

[ 3]

[ 3] [0] [1] [2]

[ ] [0] [1] [2]

[ ] [0] [1] [2]

( ) [0] [1] [2]

n

n

n

n

n

n

n

n

x n z

x n z x z x z x z

x n z x z x z x z

z x n z x z x z x z

z z x z x z x z












 




 



 

    

   

   

   









 

(b)   The unilateral z-transform of y[n]=x[n+3] is 

                    

0

( ) [ ] n

n

y z y n z







 

                           

0

2 1

3

3 2 1

0

3 2 1

0

3 2 1

[ 3]

[ 3] [ 1] [ 2] [ 3]

[ ] [ 1] [ 2] [ 3]

[ ] [ 1] [ 2] [ 3]

( ) [ 1] [ 2] [ 3]

n

n

n

n

n

n

n

n

x n z

x n z x z x z x

x n z x z x z x

z x n z x z x z x

z z x z x z x







  




   




   



  

 

       

      

      

      









 

(c) We  have  

                  

k=- m=0

y[z]= x[k] = x[n-m]
n 



   

   Therefore 

                -m -m l

m=0 m=1 l=1

y[z]= z ( ) z x[-l]z
m

z
 

    

                     -m l

1
m=1 m=0

( )
z x[-l]z

1

mz

z

 


 


 

 

10.62. Note that  

                  [ ] [ ] [ ] [ ]* [ ]xx

k

n x k x k n x n x n




      

Now, applying the convolution property, the z-transform of [ ]xx n  is  

                   ( ) { [ ]}xx z X z Z x n    
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From the time-reversal property we know that the z-transform of x[-n] is X(1/2). Therefore, 

                   ( ) (1/ 2)xx z X z X   

10.63. (a) Since the ROC is |z|<1/2, the sequence is  left-sided. Using the power-series expansion ,we get  

                 
1

1

2 2
log(1 2 )

n n n n

n n

z z
z

n n

  

 

        

Therefore , 

                 x[n]= 2 n

n



u[-n-1]. 

(b) Since the ROC is |z|>1/2, the sequence is right-sided. Using the power-series expansion ,we get  

                  1

1

(1/ 2)
log(1 (1/ 2) )

n n

n

z
z

n






    

Therefore , 

                 x[n]=- 2 n

n



u[n-1]. 

10.64. Let us define Y(z) to be  
                  

( ) ( ).
d

Y z z X z
dz

 
 

Then using the differentiation property of the z-transform ,we get  

                 Y[n] = n x[n] . 

(a) Now , 
                  

1

2 1
( ) ( ) .

11 2
1

2

d
Y z z X z z

dz z
z

    




 

Nothing that the ROC of Y(z) is z<1/2(the  same  as the ROC is X(z)), we get 

          1
y[n]= [ 1]

2

n

u n 
. 

Therefore , 

          1 1 2
x[n]= ( ) [ 1] [ 1]

n 2

n
n u n u n

n



     . 

This is the same as the answer obtained for Problem 10.63(a). 

 (b) In this part, 

               ( ) ( ).
d

Y z z X z
dz

  =
1

1

1

2
1

1
2

z

z





. 

Nothing that the ROC is |z|>1/2, (the same  as the  ROC is X(z)), we get 

               1 1
y[n]=- ( ) [ 1]

n 2

nu n  

Therefore, 

               1 1 2
x[n]=- ( ) [ 1] [ 1]

n 2

n
nu n u n

n



    

This is the same as the answer obtained for Problem 10.63(b). 

10.65.(a) From the given cH (s), we get 

                2 2

2 2

| |
| ( ) | 1

| |
c

a j a
H j

a j a

 


 

 
  

 

 

(b) Applying the bilinear transformation we get  

             
1

1

1

1
1

1

11
1| |

1 11( ) [ ]
11 1

1| |
11

d

az
za

a azH z
az a

za
az














  
 




                         . 

  Therefore ( )dH z  has a pole at z= (a-1) / (a+1) and a zero at z= (a-1) / (a+1). 

  Since a is real and positive ,  

              1
| | 1

1

a

a






 and    1
| | 1

1

a

a






 

Therefore, the pole of  ( )dH z  lies inside the unit circle and the zero of  ( )dH z  lies outside the unit circle. 

(c) ( )dH z  may be rewritten as  
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                            1

1

1 ( 1)
( )

1 ( 1)

a z a
H z

a z a





  


  

 

Therefore , 

        1 ( 1) 1 (cos sin )( 1)
| ( ) | | | | |

1 ( 1) 1 (cos sin )( 1)

j
j

c j

a e a a j a
H e

a e a a j a






 

 





      
 

      

 

This may be written as 

        2 2 2 2 2

2 2 2 2 2

( 1) cos ( 1) 2( 1)( 1)cos ( 1) sin )
( ) |

( 1) cos ( 1) 2( 1)( 1)cos ( 1) sin )
c

a a a a a
H j

a a a a a

  


  

       


       

         

2 2

2 2

( 1) ( 1) 2( 1)( 1)cos )
1

( 1) 2( 1)( 1)cos ( 1)

a a a a

a a a a





     
 

     

 

10.66. (a) We are give that  

                    
1

1

1
( ) ( )

1
d c

z
H z H

z









 

      Therefore  

                   
/ 2 / 2

/ 2 / 2

1
( ) ( ) ( ) ( tan )

1 2

j j j
j

d c c cj j j

e e e
H e H H H j

e e e

  


  

 

 

 
  

 
 

(b) From the given cH (s), we get  

       
/ 4 / 4

1
(0) 1

( )( )
c j j

H
e e 

   

And  
      

/ 4 / 4

1
( ) 0

lim( )( )
c j j

s

H
s e s e 



  
 

 

Now  

      
/ 4 / 4 2

1 1
| ( ) | | | | |

( )( ) 2cos( / 4) 1
c j j

H j
j e j e j 


    

 
    

 

                
2 2 2 2 2

1

(1 ) 4 cos ( / 4) ( 1)a   


   

 

Clearly , | ( ) |cH j  decrease  monotonically with increasing   

(c) (1) We are given that  

         
1

1

1
( ) ( )

1
d c

z
H z H

z










. 

Therefore, 
         

1 1
/ 4 / 4

1 1

1
( )

1 1
( )( )
1 1

d

j j

H z
z z

e e
z z

 
 



 


 

 
 

 

This may be rewritten as  
        

/ 4 / 4/ 4 / 4
1 1

/ 4 / 4

1 1
( )

1 1(1 )(1 )
[1 ][1 ]

1 1

d j jj j

j j

H z
e ee e

z z
e e

  

 


 

 


  

 
 

 

Therefore , ( )dH z  has exactly two pole which lie at z= / 4 / 4(1 ) /(1 )j je e     

And z=
/ 4 / 4(1 ) /(1 )j je e     . It can be easily shown that both these poles lie inside the unit circle. 

(2) From the result of part (a) , we have  

                0( ) ( tan 0) ( 0) 1j

d c cH e H j H j    

(3) We have              

2

1
| ( ) | | ( tan ) |

2
|1 tan 2 tan |

2 2

j

c cH e H j

j

 

 
 

 

 

                        

2 2 2 4

1 1

| (1 tan ) 2 tan | 1 tan
2 2 2

  
 

  

 

As   increases from 0 to pi, tan
2


 increases monotonically from 0 to  . Therefore , | ( ) |j

cH e   

decreases monotonically from 1 to 0 . 

 


