I
(e | MAGIiCARD

www.ultramagicard.com

Magicard APl documentation

Application Programming Interface for Magicard Printer Drivers

Controlled Document No: 1200 issue 9

Magicard UltraDriver Magicard API

Table of Contents

(O 11T V=SSR 1
APTFUNCHONS ... 2
ENableStatUSREPOMING.......ccviiiiiiiiiiiiiieiieeieeeeeeeeeeeeeeeeeeeeatesaaeesereseesereesreaereearesessrrssennrrnnne 2
DisableStatUSREPOITINGuviiiiiieeei it e e e e et e e e e e e e anees 4
L=< (= T o 5
T (= 1 o P 6
LAV = UL o] o] 1 (= PO PPPPPRRO 7
GetLaStPIINIEIMESSATE ...ttt ettt e e e e e e e e e e e s s e eaeeeas 8
GetLaStENAUIOMESSAQEccvviiiii i e e e e e e e e e e e et e e e e e e e eenrannnas 9
(€T=T T =1 (@011 01 F= T o PP PP 10
LY=L a1 (T £ ¥= UL 1 11
LT =1 o [o] 1 o 12
Y= A =111, o o = 14
[gToleTo (1Y F= 1o 1S (o 1=t 15
Yo Yo 1 =T 5] 1] o1 PP P PP PTPTTPPPPP 18
DT o] g=To3= 11 =To I U o Tod 1 0] o 1 P 20
REQUESIMAGDALA iieei e 20
Y= 10 |1V F= Vo | = - VPPNt 21
DGV Y= 1o F= 11 o o SR 22
Typical Application FIOWCRHAIT ... e e 23
SAMPIE COUB... i, 24
Error Code NUMENCAl VAIUES..........oeviiiiiieiiieiiieeeeeeeeeeeeeeee ettt aae e aaesaaesaeassaesssnsssassnnnnees 29

Controlled Document No: 1200 issue 9 Page ii

Magicard UltraDriver

Magicard API

Figures

Figure 1 — Generic information fIOWCNAITooiiiiiiiiie e 1

Figure 2 — Typical application flowchart

Controlled Document No: 1200 issue 9

Page iii

Overview

The purpose of this application programming interface (API) is to allow applications to
synchronize their operations with the operation of the printer.

For example, an application may need to know when the printer has finished printing on a card.

Until now, it was not possible to retrieve such information in an accurate manner due to the way
the Windows print spooler works.

With this API, an application is finally able to wait until the printer has finished its work.

Special functions are also available to place cards in the correct position for contact and
contactless chip encoding and to eject cards from the printer.

The process of controlling the printer using the APIs must be a serial one — in other words, it is
not possible to load the spooler with multiple prints and then control their flow to the printer by
API calls, since the API calls themselves may need to pass commands to the printer via the
spooler. In this situation, the APl commands would be placed in the spooler after the batch
prints, and would be out of synchronization with the print they were trying to control, so control
would be lost.

Therefore for each print job, the APIs should be used to control the card positioning, then the
image data for that single card should be loaded to the spooler. The API is then used to position
the next card for the next print job, and so on.

Generically speaking, the flow of information between the application and the status monitor is
represented in the following diagram:

Application

A

A

GDI / Spooler API

A

Status Monitor |«

A

A

Printer

Figure 1 — Generic information flowchart

The API itself can be used by loading MagAPlL.dll. A ‘C’ header file, a .def file and .lib static
library file are provided.

NB . With the API, USB communications only is supported

Controlled Release — Issue 9 Page 1

Magicard UltraDriver Magicard API

API Functions

EnableStatusReporting

Initialises the API, and also its communications channel with the printer and status monitor.

int EnableStatusReporting(HDC hDC,
HANDLE *phSession,
DWORD dwFlags);

Parameters

hDC
A device context handle for the printer driver the application is using.

phSession
A pointer to a variable that will receive a handle that identifies the newly
established session with the status monitor. This handle must be closed with
DisableStatusReporting().

dwFlags

Defines how the status monitor will deal with all errors from now on. It can
assume one of the following values:

(NB Only relevant on printers which support status monitor)

CONFIG_NORMAL | O | The status monitor will not change its current behaviour
regarding printer errors

CONFIG_QUIET | 1 | No status monitor is displayed

Return values

ERROR_SUCCESS The operation completed successfully.
MAGICARD_ERROR Win API error or a parameter is invalid.
MAGICARD_DRIVER_NOTCOMPLIANT This driver version is not supported.
MAGICARD_LOCALCOMM_ERROR Failed to open the client communications pipe.
MAGICARD_REMOTECOMM_ERROR Failed to open the monitor communications pipe.

MAGICARD_OPENPRINTER_ERROR Failed to open the printer the DC belongs to.
MAGICARD_SPOOLER_NOT_EMPTY There are print jobs queued for this printer instance.
MAGICARD_ REMOTECOMM_IN_USE The monitor communications pipe is already in use.
MAGICARD_LOCALCOMM_IN_USE The client communications pipe is already in use.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Controlled Document No: 1200 issue 9 Page 2

Magicard UltraDriver Magicard API

Remarks

The print spooler must be empty before calling this function, since the status monitor’s
behaviour will already be different when the next print job begins. Otherwise, the function
will fail with the MAGICARD_SPOOLER_NOT_EMPTY error code.

Failure to open any of the communications pipes usually means that the printer driver is
configured to print to a port that is not supported.

It may also mean that the status monitor is not installed or that the system refuses to start it
for some reason.

Alternatively, any of the two “in use” error codes usually mean that there is another
application using the API already. The exact error code depends on the operating system
and on the sequence of calls made by either application.

To help in determining if the API is indeed “in use”, an inline function has been added —
MAGICARD_Is_Status_Reporting_In_Use(int iError) — which returns TRUE if the error is
either MAGICARD_REMOTECOMM _IN_USE or MAGICARD_LOCALCOMM_IN_USE.

Controlled Document No: 1200 issue 9 Page 3

Magicard UltraDriver Magicard API

DisableStatusReporting

Closes the communications channel with the printer, returns the status monitor to its normal
behaviour and releases all resources used.

int DisableStatusReporting(HANDLE hSession);

Parameters

hSession
The session handle returned by EnableStatusReporting().

Return values
ERROR_SUCCESS The operation completed successfully.
MAGICARD_ERROR Win API error or a parameter is invalid.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Remarks
None.

Controlled Document No: 1200 issue 9 Page 4

Magicard UltraDriver Magicard API

FeedCard

Instructs the printer to feed a card to one of the chip encoding positions available.

int FeedCard(HANDLE hSession,
DWORD dwMode,
int iParam,
LPTSTR IpszJobName) ;

Parameters
hSession
The session handle returned by EnableStatusReporting().
dwMode
The desired card position. It can assume one of the following values:
FEED_CHIPCARD 1 Places the card in the contact chip encoding
station.
FEED_CONTACTLESS | 2 Places the card in range of the contactless
chip encoder antenna.
iParam
An optional positive integer parameter that is to be appended to the end of the
printer command used to feed the card.
If it is zero, nothing is appended. If it is positive, its value is used.
IpszJobName

The name of the secondary print job that is created by the API.

Return values
ERROR_SUCCESS The operation completed successfully.
MAGICARD_ERROR Win API error or a parameter is invalid.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Remarks

There are ANSI and UNICODE versions of this function, with A and W suffixes. A macro is
conditionally defined in the header to point to the correct function version. The API itself is
ANSI.

Controlled Document No: 1200 issue 9 Page 5

Magicard UltraDriver Magicard API

EjectCard

Instructs the printer to eject any card that may be present in the mechanism.

int EjectCard(HANDLE hSession,
LPTSTR IpszJobName) ;

Parameters
hSession
The session handle returned by EnableStatusReporting().
IpszJobName
The name of the secondary print job that is created by the APl when spooling is
enabled.
Return values
ERROR_SUCCESS The operation completed successfully.
MAGICARD_ERROR Win API error or a parameter is invalid.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Remarks

There are ANSI and UNICODE versions of this function, with A and W suffixes. A macro is
conditionally defined in the header to point to the correct function version. The API itself is
ANSI.

Controlled Document No: 1200 issue 9 Page 6

Magicard UltraDriver Magicard API

WairtForPrinter

Waits until the status monitor reports that the printer is no longer busy or until a time-out period
elapses.

int WaitForPrinter(HANDLE hSession);
Parameters

hSession
The session handle returned by EnableStatusReporting().

Return values

ERROR_SUCCESS The operation completed successfully.
MAGICARD_ERROR Win API error or a parameter is invalid.
MAGICARD_TIMEOUT A 30-second period has elapsed without receiving
any status information from the status monitor.
MAGICARD_PRINTER_ERROR The printer has aborted the operation, due to an

error.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Remarks

This function may timeout during lengthy operations. It is up to the application to determine
how long it is going to wait, by repeating calls to this function, before deciding that the
printer is not responding.

The timeout length cannot be changed - it is fixed at 30 seconds.

If a printer error is reported, the application may call the GetLastPrinterMessage() function
to retrieve the error message sent by the printer.

Even if the application aborts the print job, it should still call this function after every printer
operation that can cause status information to be returned: EndDoc(), FeedCard() and
EjectCard(). This ensures that the status monitor is not asked to resume its normal
behaviour before the operations that the application started are completed.

Controlled Document No: 1200 issue 9 Page 7

Magicard UltraDriver Magicard API

GetLastPrinterMessage

Retrieves a string containing the last status message sent by the (now obsolete) Rio/Tango
printer.

int GetLastPrinterMessage(HANDLE hSession,
LPSTR IpszBuffer,
LPDWORD pdwBufferSize);

Parameters

hSession
The session handle returned by EnableStatusReporting().

IpszBuffer
A pointer to the buffer that is going to receive the status message.

pdwBufferSize
A pointer to a variable that contains the buffer size.
If the buffer is too small, the function fails and places the required buffer size in

this location.
Return values
ERROR_SUCCESS The operation completed successfully.
MAGICARD_ERROR Win API error or a parameter is invalid.

MAGICARD_DRIVER_NOTCOMPLIANT The request was made to an Enduro Printer.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Remarks

This command is only valid for Rio/Tango printers. For Enduro, Rio Pro and Pronto
printers, use GetLastEnduroMessage.

The printer-specific error code is embedded in the string returned, normally at its end, in the
form “(cxxxx)”, where the x’s represent digits.

Controlled Document No: 1200 issue 9 Page 8

Magicard UltraDriver Magicard API

GetLastEnduroMessage

Retrieves a string containing the last status message sent by Enduro, Rio Pro and Pronto
printers (and their OEM derivatives).

int GetLastEnduroMessage(HANDLE hSession,
LPTSTR IpszBuffer,
LPDWORD pdwBufferSize);

Parameters

hSession
The session handle returned by EnableStatusReporting().

IpszBuffer
A pointer to the buffer that is going to receive the status message.

pdwBufferSize
A pointer to a variable that contains the buffer size.
If the buffer is too small, the function fails and places the required buffer size in

this location.
Return values
ERROR_SUCCESS The operation completed successfully.
MAGICARD_ERROR Win API error or a parameter is invalid.

MAGICARD_DRIVER_NOTCOMPLIANT The request was made to a Rio/Tango Printer.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Remarks
For Rio and Tango printers, use GetLastPrinterMessage.

The printer-specific error code is embedded in the string returned, normally at its end, in the
form “MMMM:mmmm”, where MMMM = Major Error code, mmmm = Minor Error Code

Controlled Document No: 1200 issue 9 Page 9

Magicard UltraDriver Magicard API

GeneralCommand

Sends the given command string to the printer.

int GeneralCommand(HANDLE hSession,
LPSTR IpszCommandString);

Parameters

hSession
The session handle returned by EnableStatusReporting().

IpszCommandString
The command string to be sent to the printer.

Return values
ERROR_SUCCESS The operation completed successfully.
MAG ICARD_ERROR Win API error or a parameter is invalid.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Controlled Document No: 1200 issue 9 Page 10

Magicard UltraDriver Magicard API

GetPrinterStatus

Obtains the current status of the printer.

int GetPrinterStatus(HANDLE hSession);

Parameters

hSession
The session handle returned by EnableStatusReporting().

Return values

STATUS_READY Printer is Ready

STATUS_BUSY Printer is Busy

STATUS_ERROR Printer is in Error

STATUS_OFFLINE Printer is Offline

MAGICARD_ERROR Win API error or a parameter is invalid.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Controlled Document No: 1200 issue 9 Page 11

Magicard UltraDriver Magicard API

GetEndurolnfo

Returns the printer configuration information from Enduro, Rio Pro and Pronto printers (and their
OEM derivatives)

int GetEndurolnfo(HANDLE hSession,
PRINTER_INFO *pPrinterinfo);

Parameters

hSession
The session handle returned by EnableStatusReporting().

pPrinterinfo
Pointer to a Printerinfo structure which is to be filled with the configuration
information

Structures

#define SERIAL_SIZE 20
typedef struct

{
BOOL bPrinterConnected;

DWORD eModel ;

char sModel[30];

DWORD ePrintheadType;

char sPrinterSerial [SERIAL_SIZE];
char sPrintheadSerial [SERIAL_SIZE];
char sPCBSerial[SERIAL_SIZE];

TCHAR sFirmwareVersion[SERIAL _SIZE];

char sDummy[SERIAL_SIZE - sizeof(DWORD)];
DWORD IES_Density;

DWORD iHandFeed;

DWORD iCardsPrinted;

DWORD iCardsOnPrinthead;
DWORD iDyePanelsPrinted;
DWORD iCleansSinceShipped;
DWORD iDyePanelsSinceClean;
DWORD iCardsSinceClean;
DWORD iCardsBetweenCleans;

DWORD iPrintHeadPosn;
DWORD i lImageStartPosn;
DWORD i lImageEndPosn;
DWORD iMajorError;
DWORD iMinorError;
char sTagUID[20];
DWORD iShotsOnFilm;
DWORD iShotsUsed;

char sDyeFilmType[20];
DWORD iColourLength;
DWORD iResinLength;
DWORD i0OvercoatLength;
DWORD eDyeFlags;

DWORD iCommandCode;
DWORD iDOB;

DWORD eDyeFiImManuf;

Controlled Document No: 1200 issue 9 Page 12

Magicard UltraDriver Magicard API

DWORD eDyeFilmProg;
} PRINTER_INFO;

Return values
ERROR_SUCCESS The operation completed successfully.

MAGICARD_ERROR Win API error or a parameter is invalid.
MAGICARD_DRIVER_NOTCOMPLIANT The request was made to a Rio/Tango Printer.

The structure is loaded with the complete response by an Enduro to a ‘request for
information’ command.

Controlled Document No: 1200 issue 9 Page 13

Magicard UltraDriver Magicard API

SetEjectMode

Sets the eject mode of the printer according to the passed parameter.

int SetEjectMode (HANDLE hSession,

int iMode);
Parameters
hSession
The session handle returned by EnableStatusReporting().
iMode
The eject mode being selected
SEM_EJECT_ON 0 Normal printer operation - cards are ejected
when action is complete
SEM_EJECT_OFF 1 Cards are not ejected when action is
complete
Return values
ERROR_SUCCESS The operation completed successfully.
MAGICARD_ERROR Win API error or a parameter is invalid.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Remarks
The eject mode returns to normal (eject mode on) if the printer is powered off

Controlled Document No: 1200 issue 9 Page 14

Magicard UltraDriver

Magicard API

EncodeMagStripe

Encodes data to the magnetic stripe on the card

int EncodeMagStripe (HANDLE

hSession,
iTrackNo,
iCharCount,
*1pszData,
1EncodingSpec,
iVerify,
iCoercivity,
iBitsPerChar,
iBitsPerlinch,
iParity,
iLRC);

The session handle returned by EnableStatusReporting().

The number of the track being written (1, 2 or 3)

The number of characters to be written to the track (including start and end

int
int
char
int
int
int
int
int
int
int
Parameters

hSession

iTrackNo

iCharCount

sentinels)
*|pszData

Pointer to a buffer containing the data to be written

iEncodingSpec

The encoding method to be used

EMS_ENCODING_SPEC_ISO | O

ISO Encoding

EMS_ENCODING_SPEC_JIS2 | 1

JIS2 Encoding (not Rio/Tango)

iVerify
Specifies whether verification is required
EMS_VERIFY_OFF 0 Verification is off
EMS_VERIFY_ON 1 Verification is on
iCoercivity

Specifies the coercivity of the encoding

EMS_COERCIVITY_DEFAULT | O

Default Coercivity

EMS_COERCIVITY_HICO

1

High Coercivity

EMS_COERCIVITY_LOCO

Low Coercivity

Controlled Document No: 1200 issue 9

Page 15

Magicard UltraDriver Magicard API

iBitsPerChar
Specifies the number of bits per character for the encoding (ISO only)
EMS_BITSPERCHAR_DEFAULT | O | Default bits per character
EMS_BITSPERCHAR_1 1 | 1 bit per character
EMS_BITSPERCHAR_5 2 | 5 bits per character
EMS_BITSPERCHAR_7 3 | 7 bits per character
iBitsPerInch

Specifies the number of bits per inch for the encoding (ISO only)

EMS_BITSPERINCH_DEFAULT | O | Default bits per inch

EMS_BITSPERINCH_75 1 | 75 bits perinch
EMS_BITSPERINCH_210 2 | 210 bits per inch
iParity
Specifies the parity for the encoding (ISO only)
EMS_PARITY_DEFAULT 0 | Default parity
EMS_PARITY_OFF 1 | Parity off
EMS_PARITY_ODD 2 | Odd parity
EMS_PARITY_EVEN 3 | Even parity
iLRC
Specifies the LRC for the encoding (ISO only)
EMS_LRC_DEFAULT O | Default LRC
EMS_LRC_OFF 1 | LRC off
EMS_LRC_ODD 2 | Odd LRC
EMS_LRC_EVEN 3 | Even LRC
Return values
ERROR_SUCCESS The operation completed successfully.
MAGICARD_ERROR Win API error or a parameter is invalid.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Controlled Document No: 1200 issue 9 Page 16

Magicard UltraDriver Magicard API

Remarks

JIS2 encoding is not permitted with Rio/Tango printers

Controlled Document No: 1200 issue 9 Page 17

Magicard UltraDriver Magicard API

ReadMagStripe

Reads data from the magnetic stripe on the card

int ReadMagStripe (HANDLE hSession,
MSVDATA *pMSV,

int iEncodingSpec);
Parameters
hSession
The session handle returned by EnableStatusReporting().
pMSV

Pointer to a MSV Data structure which will be filled with the magnetic stripe data.

iIEncodingSpec
The encoding method in use

EMS_ENCODING_SPEC_ISO | O | ISO Encoding

EMS_ENCODING_SPEC_JIS2 | 1 | JIS2 Encoding (not Rio Tango)

Structures
Error! Reference source not found.typedef struct
{
DWORD msv_id;
DWORD msg_len;
DWORD tkl pass;
DWORD tk2_pass;
DWORD tk3 pass;
DWORD tk1 len;
DWORD tk2_len;
DWORD tk3 len;
RAW_DATA raw;
} MSVDATA;
typedef struct
char tk1[172]; // 1SO max is 79 (7bpc, 210bpi)
char tk2[172]; // 1SO max is 40 (5bpc, 75bpi)
char tk3[172]; // 1SO max is 107 (5bpc, 210bpi)
} RAW_DATA,;
Members:

msv_id: Unique ID to distinguish this message

msg_len: Size of message, including this

tkl_pass: TRUE if Track 1 passed; FALSE if failed or not tested

tk2_pass: Same for Track 2

tk3_pass: Same for Track 3

tk1_len: Number of bytes returned for Track 1 from start sentinel to LRC inclusive
tk2_len: Same for Track 2

tk3_len: Same for Track 3

raw: Raw data for each track

Controlled Document No: 1200 issue 9 Page 18

Magicard UltraDriver

Magicard API

Return values
ERROR_SUCCESS
MAGICARD_ERROR
MAGICARD_TIMEOUT

MAGICARD_PRINTER_ERROR

The operation completed successfully.
Win API error or a parameter is invalid.

A 30-second period has elapsed without receiving
any magnetic stripe data.

The printer has aborted the operation, due to an
error.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Remarks

This function performs a complete read of the data encoded on the magnetic stripe, unlike
ReadMagData which must be used in conjunction with RequestMagData.

Controlled Document No: 1200 issue 9

Page 19

Magicard UltraDriver Magicard API

Deprecated Functions

These functions have been replaced by EncodeMagStripe and ReadMagStripe but are
maintained here for backwards compatibility.

RequestMagData

Instructs the printer to feed a card and obtain the magnetic stripe data from it.

int RequestMagData(HANDLE hSession);

Parameters

hSession
The session handle returned by EnableStatusReporting().

Return values
ERROR_SUCCESS The operation completed successfully.
MAGICARD_ERROR Win API error or a parameter is invalid.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Remarks
This function is used in conjunction with the ReadMagData function.

RequestMagData instructs the printer to feed the card and obtain the magnetic stripe data
from it; then ReadMagData instructs the printer to transmit the data to the PC.

All 3 tracks of data are read from the card.

If a printer error is reported, the application may call the GetLastPrinterMessage() function
to retrieve the error message sent by the printer.

Controlled Document No: 1200 issue 9 Page 20

Magicard UltraDriver Magicard API

ReadMagData

Instructs the printer to send magnetic data (previously obtained from the card) to the PC.

int ReadMagData(HANDLE hSession,
MSVDATA *pMSV);

Parameters
hSession
The session handle returned by EnableStatusReporting().
pMSV
Pointer to a MSV Data structure which will be filled with the magnetic stripe
data.
Structures

See API function ReadMagStripe

Return values
ERROR_SUCCESS The operation completed successfully.
MAGICARD_ERROR Win API error or a parameter is invalid.

The application may also check the result of the Win API function GetLastError() to obtain
further information about any error that has occurred.

Remarks
This function is used in conjunction with the RequestMagData function.

RequestMagData instructs the printer to feed the card and obtain the magnetic stripe data
from it; then ReadMagData instructs the printer to transmit the data to the PC.

It is important that your compiler calculates the correct size of this structure, which is 548
bytes. If not using ‘C’, bear in mind that a char is a byte of 8 bits, and an int is a signed
integer of 4 bytes. This structure is “packed”, i.e. there are no pad bytes.

Each 8-bit byte of raw data contains one sample of either 5 or 7-bit data.

The printer is big-endian, so the integer components will require byte-reversal on a little-
endian host (e.g. a PC), i.e. the bytes in each integer, e.g. “ABCD”, will arrive as “DCBA".

Controlled Document No: 1200 issue 9 Page 21

Magicard UltraDriver Magicard API

Driver Validation

The application may verify if the currently installed printer driver supports this API by
interrogating the driver for the presence of the ESC_IS APl _CAPABLE driver escape.

The following code shows a method of doing this, assuming that hDC is a handle for a device
context belonging to the driver being interrogated:

int 1Esc = ESC_IS_API1_CAPABLE;
int escRes;

escRes = ExtEscape(hDC,

QUERYESCSUPPORT,
sizeof(iEsc),
(LPCSTR)&1ESsc,
0,
NULL);

ifT (escRes > 0)

{

// The driver supports APl calls.
by

Controlled Document No: 1200 issue 9 Page 22

Magicard UltraDriver

Magicard API

Typical Application Flowchart

Print job Wait cycle

4

i

Call CreateDC() Call WaitForPrinter() <4——yes

Call
EnableStatusReporting()
StartDoc()

v
Call FeedCard()

Encode the card

yes Keep waiting?

*

no

no

v

yes—» Process error

’

no

The job completed
successfully

Continue? no

yes

Call EjectCard()
StartPage()
- GDlI callls -
EndPage()

] ()

EndDoc() <

Call
DisableStatusReporting()

Figure 2 — Typical application flowchart

Controlled Document No: 1200 issue 9

Page 23

Magicard UltraDriver

Magicard API

Sample Code

#include "stdafx.h"
#include "MagAPI.h"
#include "API_Test.h"
#include "commdlg.h"
#include <windows.h>
#include <winspool.h>
#include <stdio.h>

I R R R R R
PFNENABLESTATUSREPORTING pFnEnableStatusReporting;
PFNDISABLESTATUSREPORTING pFnDisableStatusReporting;

PFNWAITFORPRINTER pFnWaitForPrinter;

PFENGETLASTPRINTERMESSAGE pFnGetLastPrinterMessage;

PFNFEEDCARDA pFnFeedCardA,

PFNEJECTCARDA pFnEjectCardA;

[R
#define MAX_STRING 100

/I Global Variables:

HINSTANCE hinst; /I current instance
TCHAR szTitle[MAX_STRING]; I The title bar text
TCHAR szWindowClassf]MAX_STRING]; /I the main window class name

e

int APIENTRY _tWinMain(
HINSTANCE hlnstance,
HINSTANCE hPrevinstance,
LPTSTR IpCmdLine,
int nCmdShow)

HANDLE hSession;

int apiResult;

PRINTDLG pd = {0};

char szMessage[MAX_PATH];
DWORD dwMsgSize;

char DLLPath[MAX_PATH];
DWORD LenDLLPath;

/IAccess the Printer Driver Directory
if (GetPrinterDriverDirectory(NULL,
TEXT("Windows NT x86"),

1,
(LPBYTE)DLLPath,
MAX_PATH,
&LenDLLPath) == NULL)
{
MessageBox(HWND_DESKTOP,
"Cannot Access Printer Driver Directory",
"API Test - Error",
MB_OK | MB_ICONSTOP);
return O;
}

_tescat(DLLPath, "\\Magicard_RioTango24982\\MagAPI.DLL");

/ILoad the Library
HINSTANCE hLib = LoadLibrary(DLLPath);
if (hLib == NULL)

Controlled Document No: 1200 issue 9

Page 24

Magicard UltraDriver

Magicard API

}

MessageBox(HWND_DESKTOP,
"Cannot Load MagAPI.DLL",
"API Test - Error",
MB_OK | MB_ICONSTOP);
return 0;

//Get the Proc Addresses
pFnEnableStatusReporting = (PFNENABLESTATUSREPORTING) GetProcAddress(hLib, "EnableStatusReporting");
pFnDisableStatusReporting = (PFNDISABLESTATUSREPORTING) GetProcAddress(hLib, "DisableStatusReporting™);
pFnFeedCard = (PFNFEEDCARDA) GetProcAddress(hLib, FEEDCARDPROC);
pFnEjectCard = (PFNEJECTCARDA) GetProcAddress(hLib, EJECTCARDPROC);

pFnWaitForPrinter = (PFNWAITFORPRINTER) GetProcAddress(hLib, "WaitForPrinter");

pFnGetLastPrinterMessage = (PFNGETLASTPRINTERMESSAGE) GetProcAddress(hLib, "GetLastPrinterMessage");

1

I/l Get a printer DC.

1

ZeroMemory(&pd, sizeof(pd));
pd.IStructSize = sizeof(PRINTDLG);
pd.hinstance = hinstance;
pd.hwndOwner = HWND_DESKTOP;
pd.Flags = PD_RETURNDC;
pd.nCopies = 1,

pd.nFromPage = OxFFFF;
pd.nToPage = OXFFFF;

d.nMinPage = 1;

d.nMaxPage = OxFFFF;

if (PrintDIg(&pd))
{

intiEsc = ESC_IS_API_CAPABLE;
int escRes;

escRes = ExtEscape(pd.hDC, QUERYESCSUPPORT, sizeof(iEsc), (LPCSTR)&iEsc, 0, NULL);

if (escRes <= 0)

{
MessageBox (HWND_DESKTOP,
TEXT("Invalid Driver Version™),
TEXT("API Test - Error"),
MB_OK | MB_ICONSTOP);
goto exit;
}

1

/I Initialize the API.

1

/I ldeally, the spooler is empty at this point.

I

apiResult = (*pFnEnableStatusReporting)(pd.hDC, &hSession, CONFIG_QUIET);

if (apiResult = ERROR_SUCCESS)
{
dwMsgSize = MAX_PATH,;
wsprintf(szMessage,
"EnableStatusReporting() failed with code %i, error %u",
apiResult,
GetLastError());
MessageBox(HWND_DESKTOP,
szMessage,
TEXT("API _test - Error"),
MB_OK | MB_ICONSTOP);
goto exit;

Controlled Document No: 1200 issue 9

Page 25

Magicard UltraDriver Magicard API

1

/I Start the printing job as usual.

1

DOCINFO di;

di.chSize = sizeof(DOCINFO);
di.lpszDocName = "API Test - Printing";
di.lpszOutput = NULL;

StartDoc(pd.hDC, &di);

1

/I Feed a card into the printer, from the hopper.

I

apiResult = (*pFnFeedCard)(hSession, FEED_CHIPCARD, 0, TEXT("Feeding Card"));

Il

/I Process the result of the last action.
Il

do

apiResult = (*pFnWaitForPrinter)(hSession);
} while (apiResult == MAGICARD_TIMEOUT);

if (apiResult == MAGICARD_PRINTER_ERROR)
{
dwMsgSize = MAX_PATH,;
(*pFnGetLastPrinterMessage)(hSession, szMessage, &dwMsgSize);
MessageBox(HWND_DESKTOP,
szMessage,
TEXT("API Test - Printer error"),
MB_OK | MB_ICONSTOP);

}
else if (apiResult == ERROR_SUCCESS)

if (MessageBox(HWND_DESKTOP,
TEXT("Card in place. Proceed with printing?"),
TEXT("API Test"),
MB_YESNO | MB_ICONQUESTION) == IDYES)

1

/I Front of Card

I
StartPage(pd.hDC);

char szFrontMessage[] = "This is a test card";
TextOut(pd.hDC, 40, 40, szFrontMessage, Istrlen(szFrontMessage));

HPEN newPenl = CreatePen(PS_SOLID, 5, RGB(255, 0, 0));
HPEN oldPen = (HPEN)SelectObject(pd.hDC, newPenl);
Rectangle(pd.hDC, 60, 160, 320, 380);
DeleteObject(newPenl);

EndPage(pd.hDC);

if (MessageBox(HWND_DESKTOP,
TEXT("Do you want to print a double-sided card?"),
TEXT("API Test"),
MB_YESNO | MB_ICONQUESTION) == IDYES)

1

/I Back of Card

1
StartPage(pd.hDC);

char szBackMessage[] = "Reverse Side";
TextOut(pd.hDC, 40, 40, szBackMessage, Istrlen(szBackMessage));

Controlled Document No: 1200 issue 9 Page 26

Magicard UltraDriver Magicard API

HPEN newPen2 = CreatePen(PS_SOLID, 5, RGB(0, 0, 255));
SelectObject(pd.hDC, newPen2);

Rectangle(pd.hDC, 60, 160, 320, 380);
DeleteObject(newPen2);

EndPage(pd.hDC);
}

SelectObject(pd.hDC, oldPen);
EndDoc(pd.hDC);

1

/I ' Wait until the print job ends.
1

do

apiResult = (*pFnWaitForPrinter)(hSession);
} while (MAGICARD_TIMEOUT == apiResult);

if (apiResult == MAGICARD_PRINTER_ERROR)

{
dwMsgSize = MAX_PATH;
(*pFnGetLastPrinterMessage)(hSession, szMessage, &dwMsgSize);
MessageBox(HWND_DESKTOP,
TEXT("Printer Error"),
TEXT("API Test - Printer error"),
MB_OK | MB_ICONSTOP);
}
}
else
{
I
/I Eject the card from inside the printer.
I
apiResult = (*pFnEjectCard)(hSession, TEXT("Ejecting Card"));
do
{
apiResult = (*pFnWaitForPrinter)(hSession);
} while (MAGICARD_TIMEOUT == apiResult);
if (apiResult == MAGICARD_PRINTER_ERROR)
dwMsgSize = MAX_PATH;
(*pFnGetLastPrinterMessage)(hSession, szMessage, &dwMsgSize);
MessageBox(HWND_DESKTOP,
szMessage,
TEXT("API Test - Printer error"),
MB_OK | MB_ICONSTOP);
}
EndDoc(pd.hDC);
}
}
1
// Tell the monitor that it can interact normally with the user.
1

apiResult = (*pFnDisableStatusReporting)(hSession);
if (apiResult '= ERROR_SUCCESS)
dwMsgSize = MAX_PATH,;

wsprintf(szMessage,
"DisableStatusReporting() failed with code %i, error %u",

Controlled Document No: 1200 issue 9 Page 27

Magicard UltraDriver

Magicard API

exit:

apiResult, GetLastError());
MessageBox(HWND_DESKTOP,
szMessage,
TEXT("API _test - Error"),
MB_OK | MB_ICONSTOP);
}

1

/I Clean up.

1

if (NULL != pd.hDevMode)

GlobalFree(pd.hDevMode);
}
if (NULL != pd.hDevNames)

GlobalFree(pd.hDevNames);

DeleteDC(pd.hDC);
FreeLibrary(hLib);
MessageBox(HWND_DESKTOP,

TEXT("All done.",
TEXT("API Test",

MB_OK | MB_ICONINFORMATION);

Controlled Document No: 1200 issue 9

Page 28

Magicard UltraDriver Magicard API

Error Code Numerical Values

MAGICARD_TIMEOUT -1
MAGICARD_ERROR -2
MAGICARD_PRINTER_ERROR -3

MAGICARD_DRIVER_NOTCOMPLIANT -4
MAGICARD_OPENPRINTER_ERROR -5
MAGICARD_REMOTECOMM_ERROR -6
MAGICARD_LOCALCOMM_ERROR -7
MAGICARD_SPOOLER_NOT_EMPTY -8
MAGICARD_REMOTECOMM_IN_USE -9
MAG ICARD_LOCALCOMM_IN_USE -10

Controlled Document No: 1200 issue 9 Page 29

	Overview
	API Functions
	EnableStatusReporting
	DisableStatusReporting
	FeedCard
	EjectCard
	WaitForPrinter
	GetLastPrinterMessage
	GetLastEnduroMessage
	GeneralCommand
	GetPrinterStatus
	GetEnduroInfo
	SetEjectMode
	EncodeMagStripe
	ReadMagStripe

	Deprecated Functions
	RequestMagData
	ReadMagData

	Driver Validation
	Typical Application Flowchart
	Sample Code
	Error Code Numerical Values

